Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Mechanical Integrity Test (MIT)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Mechanical Integrity Test (MIT)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Mechanical Integrity Test (MIT)"
Davis, Allen G. „Assessing Reliability of Drilled Shaft Integrity Testing“. Transportation Research Record: Journal of the Transportation Research Board 1633, Nr. 1 (Januar 1998): 108–16. http://dx.doi.org/10.3141/1633-14.
Der volle Inhalt der QuelleMuñiz-Calvente, Miguel, und Alfonso Fernández-Canteli. „Special Issue: Probabilistic Mechanical Fatigue and Fracture of Materials“. Materials 13, Nr. 21 (31.10.2020): 4901. http://dx.doi.org/10.3390/ma13214901.
Der volle Inhalt der QuelleHaffke, Marcin, Matthias Pahn, Catherina Thiele und Szymon Grzesiak. „Experimental Investigation of Concrete Sandwich Walls with Glass-Fiber-Composite Connectors Exposed to Fire and Mechanical Loading“. Applied Sciences 12, Nr. 8 (12.04.2022): 3872. http://dx.doi.org/10.3390/app12083872.
Der volle Inhalt der QuelleLi, Qiong, und Carol A. Rubin. „Virtual Prototype Design and Test-Simplifying the CAD/Analysis Interface“. Applied Mechanics and Materials 284-287 (Januar 2013): 3473–76. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.3473.
Der volle Inhalt der QuelleKarolak-Michalska, Magdalena. „Byłe republiki ZSRR wobec aneksji Krymu do Rosji – analiza porównawcza reakcji państw“. Studia Gdańskie. Wizje i rzeczywistość XIV (03.06.2018): 333–48. http://dx.doi.org/10.5604/01.3001.0015.5411.
Der volle Inhalt der QuelleAbbassi, Amira, Ali Trabelsi, Sofien Akrichi und Noureddine Ben Yahia. „Assessment of cylindricity and roughness tolerances of holes drilled in marble using multiple regression and artificial intelligence“. Advances in Mechanical Engineering 13, Nr. 8 (August 2021): 168781402110406. http://dx.doi.org/10.1177/16878140211040647.
Der volle Inhalt der QuelleSalem, Ahmed Z. „Using Glass Mat Thermoplastic as Automotive Bumper’s Material to Enhance Pedestrian Safety“. Advanced Materials Research 875-877 (Februar 2014): 455–61. http://dx.doi.org/10.4028/www.scientific.net/amr.875-877.455.
Der volle Inhalt der QuelleLee, J. H., S. K. Hong, H. C. Hur und Y. J. Choi. „Improvement of the resolution in direct membrane integrity test by controlling solution surface tension“. Water Science and Technology 59, Nr. 11 (01.06.2009): 2205–11. http://dx.doi.org/10.2166/wst.2009.251.
Der volle Inhalt der QuelleUrbano, Jose, Andrej Golowin, Stefan Löhnert und Dieter Bestle. „Mechanical Integrity of Steel Discs with Corrosion Pits“. MATEC Web of Conferences 165 (2018): 04012. http://dx.doi.org/10.1051/matecconf/201816504012.
Der volle Inhalt der QuelleHossiep, Rüdiger, und Sabine Bräutigam. „Tests und Tools“. Zeitschrift für Personalpsychologie 6, Nr. 2 (April 2007): 85–90. http://dx.doi.org/10.1026/1617-6391.6.2.85.
Der volle Inhalt der QuelleDissertationen zum Thema "Mechanical Integrity Test (MIT)"
Réveillère, Arnaud. „The development of the concern for tightness in the salt cavern industries, of accurate tightness test techniques and of the concept of Mechanical Integrity Tes“. Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS564.
Der volle Inhalt der QuelleSalt caverns started being produced as a by-product of the salt production industry. In the 1940s, these caverns started being used for storage of hydrocarbons. There are now 2000 salt caverns globally storing liquid, gaseous or supercritical fluids. The necessity to test the tightness of the storage caverns came along with their development. A large variety of techniques have been proposed, varying over time, companies and countries. In addition, several acceptance criteria of these tests have been, and are still, used. While first attempts were to relate a fail/pass criteria to possible impacts, the industry rather relied on criteria that have shown their applicability and their effectiveness through a track record of a limited number of accidents when applied. This work presents all these initiatives and their historical context. Measurements uncertainties are propagated in order to enable to compare the accuracies of the main tightness test techniques. Invented in the 1970s, the nitrogen/brine "Mechanical Integrity Test" progressively became the reference tightness test technique for salt caverns. The comparison of tests accuracies shows it is excellent. Among massive storage options, salt caverns now have a singular property: their tightness can be tested very accurately
Samosky, Joseph T. (Joseph Thomas). „Spatially-localized correlation of MRI and mechanical stiffness to assess cartilage integrity in the human tibial plateau“. Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/31105.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 216-225).
Osteoarthritis is a painful degenerative joint disease affecting millions of people in the U.S. The pathogenesis of articular cartilage disease is characterized by softening of cartilage and loss and disruption of constituent macromolecules including proteoglycans and collagen. In current orthopaedic surgical practice, the gold standard for evaluating articular cartilage integrity is the use of a hand probe during arthroscopy. Mechanical probing, however, is invasive and requires anesthesia. Tightly confined areas of the articular surface can be difficult to reach and assess, and manual probing provides a subjective rather than a quantitative assessment of cartilage mechanical integrity. This thesis was motivated by the desire for a noninvasive and nondestructive means to map the variation in mechanical stiffness of an articular surface. Such a method could potentially have application to guiding surgeons during procedures and quantitatively assessing the efficacy of medical and surgical therapies. It could also potentially provide patient-specific, in vivo tissue mechanical property data for surgical simulation and preoperative procedure planning. The macromolecule glycosaminoglycan (GAG) is a significant determinant of cartilage stiffness. GAG content can be assessed noninvasively in vivo and in vitro by an MRI-based technique known as delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC), which measures the MRI parameter TI after equilibration with the ionic contrast agent Gd(DTPA)2-. With dGEMRIC, TlGd serves as an index of GAG content: we therefore examined whether cartilage stiffness could be related to dGEMRIC-measured TlGd in samples of human tibial plateaus.
(cont.) We developed an experimental methodology to permit indentation test sites and regions in dGEMRIC scans to be registered with submillimeter accuracy. We found that the load response to focal indentation (a measure of local stiffness) and locally-averaged TlGd were in general highly correlated (Pearson correlation coefficients r = .80, .90, .64, .81 (p < .002) for four different patient samples, 130 total test locations). We further demonstrated that the observed correlation is not a simple consequence of cartilage thickness effects. We observed that the parameters of the stiffness-TIGd relationship differed in some samples between the region of the tibial plateau covered by the meniscus in vivo and the more central region normally in contact with the femoral condyle. This suggests that another factor such as surface architecture or collagen integrity also influences the indentation response of the articular surface.
by Joseph Thomas Samosky.
Ph.D.
Gregori, Alberto. „Synthesis of Conjugated Polymers and Adhesive Properties of Thin Films in OPV Devices“. Thesis, Pau, 2015. http://www.theses.fr/2015PAUU3028/document.
Der volle Inhalt der QuelleOrganic photovoltaic (OPV) devices are one of the most promising applications of organic semiconductors due to their compatibility with flexible plastic substrates resulting in light weight, inexpensive and decorative products. For a long time poly(3-hexylthiophene) (P3HT) has been the polymer of choice in OPV devices in combination with [6,6]-phenyl-C61-butyric acid methylester (PC61BM) as acceptor. However, recent research has focused on polymers with improved absorbance and processability that can ensure higher efficiencies and longer lifetimes (Low BandGap polymers (LBGs)). This has been fully demonstrated with a power conversion efficiency (PCE) above 11%. This thesis reports synthesis and characterization of two series of so-called “push-pull” (or donor-acceptor) LBGs based on the donor unit 4,4′-bis(2-ethylhexyl)-5,5’-dithieno[3,2-b:2′,3′-d]silole (DTS) and either 3,6-dithiophen-2-yl-2, 5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DPP) or 5,7-di(thienyl)thieno[3,4-b]pyrazines (DTP), as acceptor unit. All π-conjugated molecules and polymers were characterized by chemical investigation and their optoelectronic, morphological, and photovoltaic properties are reported. The DTS-DPP series was chosen because representative of a large number of LBG polymers and provided an easily accessible and useful template to discover the importance of the type of side-chain used on the polymer optoelectronic and thermal properties. First studies on DTS-DPP:PC61BM devices have been conducted, in order to investigate any effect on their photovoltaic properties. The best device obtained had a PCE of 1.7% with JSC of 5.9 mA•cm-2, VOC of 0.54 V and FF of 0.58. The DTS-DTP series was chosen for the high stability of the two units and for the ease of substitution of the side-groups. The synthesis was partially successful and only oligomers were obtained. Nonetheless, chemical characterization was performed but their application in OPV was not explored. In terms of device stability, the electrical failure mechanisms in OPV devices have been investigated, while little is known about their mechanical stability. The characteristic thin film stresses of each layer present in organic solar cells, in combination with other possible fabrication, handling and operational stresses, provide the mechanical driving force for delamination of weak interfaces or even their de-cohesion, leading to a loss of device integrity and performance. A technique to probe weak layers or interfaces in inverted polymer:fullerene solar cells is presented. It was developed by establishing a new set-up for the pull-off test. The technique was developed using inverted device, with the structure glass/ITO/ZnO/P3HT:PC61BM/PEDOT:PSS/Ag. The delaminated devices showed that the weakest point was localized at the active layer/hole transporting layer interface, in good agreement with the literature. The technique was extended varying both sensitive layers, using different p-type low bandgap (co)polymers for the active layer (PSBTBT and PDTSTzTz) in combination with two different PEDOT:PSS formulations, the water based CleviosTM HTL Solar and a new organic solvent based HTL Solar 2. The half-devices produced upon destructive testing have been characterized by contact angle measurement, AFM and XPS to locate the fracture point. A difference in the stress at break for devices made with different combinations of active and hole transporting layers is visible, suggesting different fracture paths, as confirmed by surface characterization and could be correlated to the different behavior of the active layer with the two PEDOT:PSS formulations. Another solution adopted, it had been the introduction of amphiphilic block-copolymer interlayer to enhance the compatibility of the two layers. This strategy was not successful and the new architecture showed reduced adhesion strength. Further development of device processing could make this new architecture a viable alternative
Hare, Brian. „Evaluation of Packaging Film Mechanical Integrity Using a Standardized Scratch Test“. Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-08-9796.
Der volle Inhalt der QuelleBücher zum Thema "Mechanical Integrity Test (MIT)"
Technisches Englisch-Deutsch Wörterbuch Automobiltechnik Kraftfahrzeugtechnik Luftfahrt kfz-Mechatronik: Technische Fachbegriffe werden mit einer autocomplete-suche / auto-vervollständige suche gefunden. 63500 Seligenstadt, Germany: Verlag Lehrmittel Wagner, 2010.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Mechanical Integrity Test (MIT)"
Bilke, Lars, Thomas Fischer, Dmitri Naumov, Daniel Pötschke, Karsten Rink, Amir Shoarian Sattari, Patrick Schmidt, Wenqing Wang und Keita Yoshioka. „Code Descriptions“. In GeomInt–Mechanical Integrity of Host Rocks, 243–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61909-1_7.
Der volle Inhalt der QuelleLacombe, Alexandra, Yann Landon, Manuel Paredes, Clément Chirol und Audrey Benaben. „Influence of the Hole Surface Integrity on the Fatigue Strength of an Aluminium Drilled Part“. In Lecture Notes in Mechanical Engineering, 34–40. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70566-4_7.
Der volle Inhalt der QuelleMuvunzi, Rumbidzai, Ilesanmi Daniyan, Festus Fameso und Khumbulani Mpofu. „Modelling and Simulation of Pump Impeller Produced Using Fused Deposition Modelling“. In Lecture Notes in Mechanical Engineering, 647–56. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28839-5_73.
Der volle Inhalt der QuelleDallam, Craig B., und Brian K. Damkroger. „Characterization of Welds“. In Weld Integrity and Performance, 39–55. ASM International, 1997. http://dx.doi.org/10.31399/asm.tb.wip.t65930039.
Der volle Inhalt der QuelleDzidic, Sanin, und Aldin Mahmutovic. „A Proposal for Design Model for Determining the Flexural Bearing Capacity of RC Beams Reinforced by Steel with Reduced Modulus of Elasticity“. In Advances in Structural Integrity and Failure [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1002342.
Der volle Inhalt der QuelleSamal, M. K., und K. S. Balakrishnan. „Experiments on a Ring Tension Setup and FE Analysis to Evaluate Transverse Mechanical Properties of Tubular Components“. In Modeling and Simulation Techniques in Structural Engineering, 91–115. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0588-4.ch004.
Der volle Inhalt der QuelleZhang, Xiaofei, Yuting Liu, Bo Zhang und Peipei Wei. „Experimental Study on Basic Mechanical Properties of SiO2 Modified Basalt Fiber Concrete“. In Advances in Frontier Research on Engineering Structures. IOS Press, 2023. http://dx.doi.org/10.3233/atde230225.
Der volle Inhalt der QuelleEl Bahaoui, Jalal, Mohamed Chairi, Guido Di Bella, Chiara Borsellino und Federica Favaloro. „Effect of Fiber Orientation and Matrix Type on Machining Behavior and Structural Integrity of Glass and Basalt Fiber-Reinforced Polymer Composites“. In Machining Polymer Matrix Composites, 39–64. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-9927-6.ch002.
Der volle Inhalt der QuelleWu, Chen, Chengqing Liu, Yanning Lou und Tao Sheng. „Experimental Study on Mechanical Properties of Laminated Bamboo Board Rubber Isolation Bearing for Rural Buildings“. In Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220920.
Der volle Inhalt der QuelleCheshire, William P. „Cardiovagal Reflexes“. In Clinical Neurophysiology, 661–76. Oxford University Press, 2009. http://dx.doi.org/10.1093/med/9780195385113.003.0039.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Mechanical Integrity Test (MIT)"
Yoo, Youngik, Kyounghong Kim, Kyongbo Eom, Seongki Lee und Jongsung Yoo. „Finite Element Analysis for Fuel Assembly Structural Behavior“. In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81621.
Der volle Inhalt der QuelleAraujo, Paulo, José Carlos Teixeira, Dionisio Silveira, Elisabete Silva, Delfim Soares, Raul Fangueiro und Maria Cândida Vilarinho. „Development of Fiber Structures for High Performance Heat Resistant Curtains“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24016.
Der volle Inhalt der QuelleMcKeighan, Peter C., David Y. Jeong und Joseph W. Cardinal. „Mechanical Properties of Tank Car Steels Retired From the Fleet“. In 2009 Joint Rail Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/jrc2009-63060.
Der volle Inhalt der QuelleJanczewski, Jacek, Ulf Nilsson, Torsten Strand und Christian Troger. „Heat Load on the Walls of an Annular DLE Combustor Calculation and Comparison With Experiments“. In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-454.
Der volle Inhalt der QuelleHaggag, Fahmy M., und Larry D. Phillips. „Integrating Automated Ball Indentation With ASME B31G Code to Assess Integrity of Corroded Pipelines“. In 2004 International Pipeline Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ipc2004-0357.
Der volle Inhalt der QuelleYu, Hailing, Yim H. Tang, Jeffrey E. Gordon und David Y. Jeong. „Modeling the Effect of Fluid-Structure Interaction on the Impact Dynamics of Pressurized Tank Cars“. In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11926.
Der volle Inhalt der QuelleSaiyed, S., S. A. Kudtarkar, R. Murcko und K. Srihari. „Assessment of 20 Micrometer Diameter Wires for Wire Bond Interconnect Technology“. In ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33691.
Der volle Inhalt der QuelleAllameh, Seyed M., Hadi Allameh, Roger Miller, Avery Lenihan und Dhruv Kota. „On the 3D Printing of Reinforced Concrete“. In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-112719.
Der volle Inhalt der QuelleSammakia, Bahgat, und Sanjeev Sathe. „Thermal Issues That Arise due to Manufacturing Processes: Evaluation and Measurement Techniques“. In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0925.
Der volle Inhalt der QuelleZheng, Gang, Feng Shen, Yi Peng, Fang Wu, Jundong Wang und Lipei Chen. „A III+ Generation Pressurizer Stress Analysis and Evaluation“. In ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63415.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Mechanical Integrity Test (MIT)"
Voegeli, Sam. PR-317-10701-R01 Temperature Logging as a Mechanical Integrity Test (MIT) for Gas-Filled Caverns. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2012. http://dx.doi.org/10.55274/r0010850.
Der volle Inhalt der QuelleLi, Jun. Aboveground Injection System Mechanical Integrity Test Results Report. Office of Scientific and Technical Information (OSTI), Januar 2018. http://dx.doi.org/10.2172/2004876.
Der volle Inhalt der QuelleBuchholz. L52308 Temperature Logging as a Cavern Mechanical Integrity Test. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Oktober 2010. http://dx.doi.org/10.55274/r0010397.
Der volle Inhalt der QuelleRoberts, Barry L. Sensitivity Analysis of Salt Storage Cavern Mechanical Integrity Test Parameters. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1615452.
Der volle Inhalt der QuelleWei, Fulu, Ce Wang, Xiangxi Tian, Shuo Li und Jie Shan. Investigation of Durability and Performance of High Friction Surface Treatment. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317281.
Der volle Inhalt der QuelleMohr, H. O. PR-209-9217-R01 Mechanical Connections for J-lay. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juli 1994. http://dx.doi.org/10.55274/r0012126.
Der volle Inhalt der QuelleAuthor, Unknown. PR-203-027-R01 Evaluation of Screen Testing Program for J-Lay Connections. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 1992. http://dx.doi.org/10.55274/r0012125.
Der volle Inhalt der QuelleHaines und Rosenfeld. L52125 Physical Performance and Inspection Objectives to Inspect Currently Non Piggable Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 2004. http://dx.doi.org/10.55274/r0011137.
Der volle Inhalt der QuelleJarram, Paul, Phil Keogh und Dave Tweddle. PR-478-143723-R01 Evaluation of Large Stand Off Magnetometry Techniques. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Februar 2015. http://dx.doi.org/10.55274/r0010841.
Der volle Inhalt der QuelleTandon, Samarth, und Ravi Krishnamurthy. PR-328-223812-R01 Tools and Methods to Assess Pipe Material Properties from Inside the Pipeline. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Dezember 2023. http://dx.doi.org/10.55274/r0000047.
Der volle Inhalt der Quelle