Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Mean field optimal transport.

Dissertationen zum Thema „Mean field optimal transport“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-41 Dissertationen für die Forschung zum Thema "Mean field optimal transport" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Mészáros, Alpár Richárd. „Density constraints in optimal transport, PDEs and mean field games“. Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112155/document.

Der volle Inhalt der Quelle
Annotation:
Movité par des questions posées par F. Santambrogio, cette thèse est dédiée à l'étude de jeux à champ moyen et des modèles impliquant le transport optimal avec contraintes de densité. A fin d'étudier des modèles de MFG d'ordre deux dans l'esprit des travaux de F. Santambrogio, on introduit en tant que brique élementaire un modèle diffusif de mouvement de foule avec contraintes de densité (en généralisant dans une sense les travaux de Maury et al.). Le modèle est décrit par l'évolutions de la densité de la foule, qui peut être vu comme une courbe dans l'espace de Wasserstein. Du point de vu EDP, ça correspond à une équation de Fokker-Planck modifiée, avec un terme supplémentaire, le gradient d'une pression (seulement dans la zone saturée) dans le drift. En passant par l'équation duale et en utilisant des estimations paraboliques bien connues, on démontre l'unicité du pair densité et pression. Motivé initialement par l'algorithm de splitting (utilisé dans le résultat d'existence ci-dessus), on étudie des propriétés fines de la projection de Wasserstein en dessous d'un seuil donné. Intégrant cette question dans une classe plus grande de problèmes impliquant le transport optimal, on démontre des estimations BV pour les optimiseurs. D'autres applications possibles (en transport partiel, optimisation de forme et problèmes paraboliques dégénérés) de ces estimations BV sont également discutées.En changeant le point de vu, on étudie également des modèles de MFG variationnels avec contraintes de densité. Dans ce sens, les systèmes de MFG sont obtenus comme conditions d'optimalité de premier ordre pour deux problèmes convexes en dualité. Dans ces systèmes un terme additionnel apparaît, interpreté comme un prix à payer quand les agents passent dans des zones saturées. Premièrement, en profitant des résultats de régularité elliptique, on montre l'existence et la caractérisation de solutions des MFG de deuxième ordre stationnaires avec contraintes de densité. Comme résultat additionnel, on caractérise le sous-différentiel d'une fonctionnelle introduite par Benamou-Brenier pour donner une formulation dynamique du problème de transport optimal. Deuxièmement, (basé sur une technique de pénalisation) on montre qu'une classe de systèmes de MFG de premier ordre avec contraintes de densité est bien posée. Une connexion inattendu avec les équations d'Euler incompressible à la Brenier est égalment donnée
Motivated by some questions raised by F. Santambrogio, this thesis is devoted to the study of Mean Field Games and models involving optimal transport with density constraints. To study second order MFG models in the spirit of the work of F. Santambrogio, as a possible first step we introduce and show the well-posedness of a diffusive crowd motion model with density constraints (generalizing in some sense the works by B. Maury et al.). The model is described by the evolution of the people's density, that can be seen as a curve in the Wasserstein space. From the PDE point of view, this corresponds to a modified Fokker-Planck equation, with an additional gradient of a pressure (only living in the saturated zone) in the drift. We provide a uniqueness result for the pair density and pressure by passing through the dual equation and using some well-known parabolic estimates. Initially motivated by the splitting algorithm (used for the above existence result), we study some fine properties of the Wasserstein projection below a given threshold. Embedding this question into a larger class of variational problems involving optimal transport, we show BV estimates for the optimizers. Other possible applications (for partial optimal transport, shape optimization and degenerate parabolic problems) of these BV estimates are also discussed.Changing the point of view, we also study variational Mean Field Game models with density constraints. In this sense, the MFG systems are obtained as first order optimality conditions of two convex problems in duality. In these systems an additional term appears, interpreted as a price to be paid when agents pass through saturated zones. Firstly, profiting from the regularity results of elliptic PDEs, we give the existence and characterization of the solutions of stationary second order MFGs with density constraints. As a byproduct we characterize the subdifferential of a convex functional introduced initially by Benamou-Brenier to give a dynamic formulation of the optimal transport problem. Secondly, (based on a penalization technique) we prove the well-posedness of a class of first order evolutive MFG systems with density constraints. An unexpected connection with the incompressible Euler's equations à la Brenier is also given
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Marzufero, Luciano. „Some optimal visiting problems: from a single player to a mean-field type model“. Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/350780.

Der volle Inhalt der Quelle
Annotation:
In an optimal visiting problem, we want to control a trajectory that has to pass as close as possible to a collection of target points or regions. We introduce a hybrid control-based approach for the classic problem where the trajectory can switch between a group of discrete states related to the targets of the problem. The model is subsequently adapted to a mean-field game framework, that is when a huge population of agents plays the optimal visiting problem with a controlled dynamics and with costs also depending on the distribution of the population. In particular, we investigate a single continuity equation with possible sinks and sources and the field possibly depending on the mass of the agents. The same problem is also studied on a network framework. More precisely, we study a mean-field game model by proving the existence of a suitable definition of an approximated mean-field equilibrium and then we address the passage to the limit.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Frénais, Brieuc. „Modèles stochastiques de branchement-sélection“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD033.

Der volle Inhalt der Quelle
Annotation:
L'objet central de cette thèse est un système de particules se déplaçant sur la droite réelle et soumises à des règles de branchement et de sélection, appelé N-processus de Markov branchant, qui généralise le N-mouvement brownien branchant étudié par Maillard en autorisant des trajectoires plus générales pour les particules. Nos principaux résultats établissent sous certaines hypothèses de régularité l'existence d'une limite hydrodynamique pour ce système de particule, qui est la fonction de répartition de la loi du processus sous-jacent conditionné à ne pas avoir franchi une certaine frontière, caractérisée comme solution d'un problème inverse du premier temps de passage. La démonstration repose sur un couplage avec des processus auxiliaires, construit en exploitant une hypothèse de monotonie stochastique du processus sous-jacent. En parallèle, nous abordons un problème de transport optimal en champ moyen sous un angle numérique. Nous développons trois méthodes d'apprentissage profond pour obtenir des solutions approchées, mises en œuvre sur divers cas tests, illustrant l'efficacité des approches proposées
The central object of this thesis is a system of particles moving on the real line and subject to branching and selection rules, called N-branching Markov process, which generalizes the N-branching Brownian motion studied by Maillard, by allowing more general trajectories for the particles. Our main results establish under certain regularity assumptions the existence of a hydrodynamic limit for this particle system, which is the c.d.f. of the distribution of the underlying process conditioned on not having crossed a certain boundary, characterized as the solution of an inverse first-passage time problem. The proof relies on a coupling with auxiliary processes, constructed by exploiting an assumption of stochastic monotonicity on the underlying process. In parallel, we consider the mean field optimal transport problem with a numerical point of view. We develop three deep learning methods to obtain approximate solutions, implemented on various test cases, illustrating the effectiveness of the proposed approaches
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bonnet, Benoît. „Optimal control in Wasserstein spaces“. Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0442.

Der volle Inhalt der Quelle
Annotation:
Une vaste quantité d'outils mathématiques permettant la modélisation et l'analyse des problèmes multi-agents ont récemment été développés dans le cadre de la théorie du transport optimal. Dans cette thèse, nous étendons pour la première fois plusieurs de ces concepts à des problématiques issues de la théorie du contrôle. Nous démontrons plusieurs résultats sur ce sujet, notamment des conditions nécessaires d'optimalité de type Pontryagin dans les espaces de Wasserstein, des conditions assurant la régularité intrinsèque de solutions optimales, des conditions suffisantes pour l'émergence de différents motifs, ainsi qu'un résultat auxiliaire à propos des arrangements de certaines singularités en géométrie sous-Riemannienne
A wealth of mathematical tools allowing to model and analyse multi-agent systems has been brought forth as a consequence of recent developments in optimal transport theory. In this thesis, we extend for the first time several of these concepts to the framework of control theory. We prove several results on this topic, including Pontryagin optimality necessary conditions in Wasserstein spaces, intrinsic regularity properties of optimal solutions, sufficient conditions for different kinds of pattern formation, and an auxiliary result pertaining to singularity arrangements in Sub-Riemannian geometry
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Capuani, Rossana. „Mean Field Games with State Constraints“. Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED006.

Der volle Inhalt der Quelle
Annotation:
L’objet de cette thèse est l’étude des jeux champs moyen déterministes avec contrainte sur l’état. La théorie des jeux à champ moyen (mean field games (MFG)), initiée par Lasry et Lions en 2006, étudie des problèmes d’optimisation pour grandes populations d'agents dans un milieu dynamique. L'analyse mathématique de tels problèmes s'est jusqu'à présent concentrée sur des situations dans lequel les agents évoluent dans tout l’espace. En pratique, cependant, les agents ont des contraintes sur l'état. Le but de la thèse est celle d'étudier l'impact de ces contraintes sur l'analyse des systèmes de jeux à champ moyen. Nous montrons que les équilibres de Nash peuvent être décrits en termes de point fixe sur un espace de mesure sur des courbes contraintes (notion d’équilibre généralisé). Afin d’obtenir des résultats plus fins sur de tels équilibres, nous montrons un principe d’optimalité lisse pour les courbes optimales avec contraintes sur l’état. Nous en déduisons que les équilibres généralisés satisfont un système MFG, où les équations de Hamiton-Jacobi et les équations de transport doivent être entendues dans un sens spécifique
The aim of this Thesis is to study deterministic mean field games with state constraints. Mean field games (MFG) is a recent theory invented by Lasry and Lions which studies optimization problems with large populations of agents in a dynamical framework. The mathematical analysis of such problems has so far focused on situations where the agents can evolve in the whole space. In practice, however, the agents often have constraints on their state. The aim of this Thesis is to understand the consequence of such constraints on the analysis of mean field games. We first show that the Nash MFG equilibria can be described as fixed points on the space of measures on constrained trajectories (generalized MFG equilibria). In order to obtain more precise results on these equilibria, we show a smooth optimality principle for the optimal trajectories of control problem with state constraints. We derive from this that the generalized equilibria satisfy a MFG system in which the Hamilton-Jacobi equation and the continuity equation have to be understand in a specific sense
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Monson, Peter A. „Dynamic mean field theory for fluids in mesoporous materials“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-184643.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Monson, Peter A. „Dynamic mean field theory for fluids in mesoporous materials“. Diffusion fundamentals 16 (2011) 13, S. 1-2, 2011. https://ul.qucosa.de/id/qucosa%3A13742.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Häggbom, Marcus, und Shayan Nafar. „Mean-Variance Portfolio Selection Accounting for Financial Bubbles: A Mean-Field Type Approach“. Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252299.

Der volle Inhalt der Quelle
Annotation:
The phenomenon of financial bubbles is known to have impacted various markets since the seventeenth century. Such bubbles are known to form when the market drastically overvalues the price of an asset, causing its market value to increase hyperbolically, only to suddenly collapse once the untenable perceived future prospects of the asset are realized. Hence, it remains crucial for investors to be able to sell off assets residing within a bubble before they burst and their value is significantly diminished. Thus, portfolio optimization methods capable of accounting for financial bubbles in stock dynamics is a field of great value and interest for market participants. Portfolio optimization with respect to the mean-field is a relatively novel approach to accounting for the bubble-phenomenon. Hence, this paper investigates a previously unattempted method of portfolio optimization, providing a mean-field solution to the mean-variance trade-off problem, as well as providing new definitions of stock dynamics capable of diverting investors from bubbles.
Finansiella bubblor är ett fenomen som har påverkat marknader sedan 1600-talet. Bubblor tenderar att skapas när marknaden kraftigt övervärderar en tillgång vilket orsakar en hyperbolisk tillväxt i marknadspriset. Detta följs av en plötslig kollaps. Därför är det viktigt för investerare att kunna minska sin exponering mot aktier som befinner sig i en bubbla, så att risken för stora plötsliga förluster reduceras. Således är portföljoptimering där aktiedynamiken tar hänsyn till bubblor av högt intresse för marknadsdeltagare. Portföljoptimering med avseende på medelfältet är ett relativt nytt tillvägagångssätt för att behandla bubbelfenomen. Av denna anledning undersöks i detta arbete en hittills oprövad lösningsmetod som möjliggör en medelfältslösning till avvägningen mellan förväntad avkastning och risk. Där-utöver presenteras även ett antal nya modeller för aktier som kan bortleda investerare från bubblor.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Basna, Rani. „Mean Field Games for Jump Non-Linear Markov Process“. Doctoral thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-55852.

Der volle Inhalt der Quelle
Annotation:
The mean-field game theory is the study of strategic decision making in very large populations of weakly interacting individuals. Mean-field games have been an active area of research in the last decade due to its increased significance in many scientific fields. The foundations of mean-field theory go back to the theory of statistical and quantum physics. One may describe mean-field games as a type of stochastic differential game for which the interaction between the players is of mean-field type, i.e the players are coupled via their empirical measure. It was proposed by Larsy and Lions and independently by Huang, Malhame, and Caines. Since then, the mean-field games have become a rapidly growing area of research and has been studied by many researchers. However, most of these studies were dedicated to diffusion-type games. The main purpose of this thesis is to extend the theory of mean-field games to jump case in both discrete and continuous state space. Jump processes are a very important tool in many areas of applications. Specifically, when modeling abrupt events appearing in real life. For instance, financial modeling (option pricing and risk management), networks (electricity and Banks) and statistics (for modeling and analyzing spatial data). The thesis consists of two papers and one technical report which will be submitted soon: In the first publication, we study the mean-field game in a finite state space where the dynamics of the indistinguishable agents is governed by a controlled continuous time Markov chain. We have studied the control problem for a representative agent in the linear quadratic setting. A dynamic programming approach has been used to drive the Hamilton Jacobi Bellman equation, consequently, the optimal strategy has been achieved. The main result is to show that the individual optimal strategies for the mean-field game system represent 1/N-Nash equilibrium for the approximating system of N agents. As a second article, we generalize the previous results to agents driven by a non-linear pure jump Markov processes in Euclidean space. Mathematically, this means working with linear operators in Banach spaces adapted to the integro-differential operators of jump type and with non-linear partial differential equations instead of working with linear transformations in Euclidean spaces as in the first work. As a by-product, a generalization for the Koopman operator has been presented. In this setting, we studied the control problem in a more general sense, i.e. the cost function is not necessarily of linear quadratic form. We showed that the resulting unique optimal control is of Lipschitz type. Furthermore, a fixed point argument is presented in order to construct the approximate Nash Equilibrium. In addition, we show that the rate of convergence will be of special order as a result of utilizing a non-linear pure jump Markov process. In a third paper, we develop our approach to treat a more realistic case from a modelling perspective. In this step, we assume that all players are subject to an additional common noise of Brownian type. We especially study the well-posedness and the regularity for a jump version of the stochastic kinetic equation. Finally, we show that the solution of the master equation, which is a type of second order partial differential equation in the space of probability measures, provides an approximate Nash Equilibrium. This paper, unfortunately, has not been completely finished and it is still in preprint form. Hence, we have decided not to enclose it in the thesis. However, an outlook about the paper will be included.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Chen, Rui. „Dynamic optimal control for distress large financial networks and Mean field systems with jumps Optimal connectivity for a large financial network Mean Field BSDEs and Global Dynamic Risk Measures“. Thesis, Paris Sciences et Lettres (ComUE), 2019. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2019PSLED042.

Der volle Inhalt der Quelle
Annotation:
Cette thèse propose des modèles et des méthodes pour étudier le contrôle du risque dans de larges systèmes financiers. Nous proposons dans une première partie une approche structurelle : nous considérons un système financier représenté comme un réseau d’institutions connectées entre elles par des interactions stratégiques sources de financement mais également par des interactions qui les exposent à un risque de contagion de défaut. La nouveauté de notre approche réside dans le fait que ces deux types d’interaction interfèrent. Nous proposons des nouvelles notions d’équilibre pour ces systèmes et étudions la connectivité optimale du réseau et le risque systémique associé. Dans une deuxième partie, nous introduisons des mesures de risque systémique définies par des équations différentielles stochastiques rétrogrades dirigées par des opérateurs à champ moyen et étudions des problèmes d’arrêt optimal associés. La dernière partie aborde des questions de liquidation optimale de portefeuilles
This thesis presents models and methodologies to understand the control of systemic risk in large systems. We propose two approaches. The first one is structural : a financial system is represented as a network of institutions. They have strategic interactions as well as direct interactions through linkages in a contagion process. The novelty of our approach is that these two types of interactions are intertwined themselves and we propose new notions of equilibria for such games and analyze the systemic risk emerging in equilibrium. The second approach is a reduced form.We model the dynamics of regulatory capital using a mean field operator : required capital depends on the standalone risk but also on the evolution of the capital of all other banks in the system. In this model, required capital is a dynamic risk measure and is represented as a the solution of a mean-field BDSE with jumps. We show a novel dual representation theorem. In the context of meanfield BSDEs the representation gives yield to a stochastic discount factor and a worst-case probability measure that encompasses the overall interactions in the system. We also solve the optimal stopping problem of dynamic risk measure by connecting it to the solution of reflected meanfield BSDE with jumps. Finally, We provide a comprehensive model for the order book dynamics and optimal Market making strategy appeared in liquidity risk problems
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Wang, Ziyuan. „Single-Agent and Mean-Field Time-Inconsistent Stopping Problems in Discrete Time“. Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29505.

Der volle Inhalt der Quelle
Annotation:
In this thesis, we first consider single-agent time-inconsistent stopping problems under non-exponential discounting in discrete time with infinite horizon. We extend the iterative approach introduced by Huang and Zhou (2017) to time-inhomogeneous setting and establish the existence of nonstationary subgame perfect Nash equilibria. Under certain continuity assumptions, we further show the existence of a unique optimal equilibrium which dominates any other equilibria pointwisely. Explicit examples of time-homogeneous model with time-inhomogeneous equilibria are also constructed. We then apply the single-agent results to mean field stopping games where each agent plays against other agents as well as against future selves. We construct a single-agent optimal equilibrium for each fixed mean field interaction represented by the proportion of players that have stopped at each time and use this to show the existence of two-layer equilibria in two examples of mean field time-inconsistent stopping games.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Benazzoli, Chiara. „Optimal choices: mean field games with controlled jumps and optimality in a stochastic volatility model“. Doctoral thesis, Università degli studi di Trento, 2018. https://hdl.handle.net/11572/369062.

Der volle Inhalt der Quelle
Annotation:
Decision making in continuous time under random influences is the leitmotif of this work. In the first part a family of mean field games with a state variable evolving as a jump-diffusion process is studied. Under fairly general conditions, the existence of a solution in a relaxed version of these games is established and conditions under which the optimal strategies are in fact Markovian are given. The proofs rely upon the notions of relaxed controls and martingale problems. Mean field games represent the limit, as the number of players tends to infinity, of nonzero-sum stochastic differential games. Under the assumption that the former admit a regular Markovian solution, an approximate Nash equilibrium for the corresponding n-player games is constructed, and the rate of convergence is provided. Finally, the general theory is applied to a simple illiquid inter-bank market model, where the banks can adjust their reserves only at the jump times of some given Poisson processes with a common constant intensity, and some numerical results are provided. In the second part a stochastic optimization problem is presented. Here the evolution of the state is modeled as in the Heston model, but with a further multiplicative control input in the volatility term. The main objective is to consider the possible role of an external actor, whose exogenous contribution is summarised in the control itself. The solvability of the Hamilton-Jacobi-Bellman equation associated to this optimal control problem is discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Benazzoli, Chiara. „Optimal choices: mean field games with controlled jumps and optimality in a stochastic volatility model“. Doctoral thesis, University of Trento, 2018. http://eprints-phd.biblio.unitn.it/2994/1/PhD_Thesis_-_Chiara_Benazzoli_-_eprints.pdf.

Der volle Inhalt der Quelle
Annotation:
Decision making in continuous time under random influences is the leitmotif of this work. In the first part a family of mean field games with a state variable evolving as a jump-diffusion process is studied. Under fairly general conditions, the existence of a solution in a relaxed version of these games is established and conditions under which the optimal strategies are in fact Markovian are given. The proofs rely upon the notions of relaxed controls and martingale problems. Mean field games represent the limit, as the number of players tends to infinity, of nonzero-sum stochastic differential games. Under the assumption that the former admit a regular Markovian solution, an approximate Nash equilibrium for the corresponding n-player games is constructed, and the rate of convergence is provided. Finally, the general theory is applied to a simple illiquid inter-bank market model, where the banks can adjust their reserves only at the jump times of some given Poisson processes with a common constant intensity, and some numerical results are provided. In the second part a stochastic optimization problem is presented. Here the evolution of the state is modeled as in the Heston model, but with a further multiplicative control input in the volatility term. The main objective is to consider the possible role of an external actor, whose exogenous contribution is summarised in the control itself. The solvability of the Hamilton-Jacobi-Bellman equation associated to this optimal control problem is discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Mu, Tingshu. „Backward stochastic differential equations and applications : optimal switching, stochastic games, partial differential equations and mean-field“. Thesis, Le Mans, 2020. http://www.theses.fr/2020LEMA1023.

Der volle Inhalt der Quelle
Annotation:
Cette thèse est relative aux Equations Différentielles Stochastique Rétrogrades (EDSRs) réfléchies avec deux obstacles et leurs applications aux jeux de switching de somme nulle, aux systèmes d’équations aux dérivées partielles, aux problèmes de mean-field. Il y a deux parties dans cette thèse. La première partie porte sur le switching optimal stochastique et est composée de deux travaux. Dans le premier travail, nous montrons l’existence de la solution d’un système d’EDSR réfléchies à obstacles bilatéraux interconnectés dans le cadre probabiliste général. Ce problème est lié à un jeu de switching de somme nulle. Ensuite nous abordons la question de l’unicité de la solution. Et enfin nous appliquons les résultats obtenus pour montrer que le système d’EDP associé à une unique solution au sens viscosité, sans la condition de monotonie habituelle. Dans le second travail, nous considérons aussi un système d’EDSRs réfléchies à obstacles bilatéraux interconnectés dans le cadre markovien. La différence avec le premier travail réside dans le fait que le switching ne s’opère pas de la même manière. Cette fois-ci quand le switching est opéré, le système est mis dans l’état suivant importe peu lequel des joueurs décide de switcher. Cette différence est fondamentale et complique singulièrement le problème de l’existence de la solution du système. Néanmoins, dans le cadre markovien nous montrons cette existence et donnons un résultat d’unicité en utilisant principalement la méthode de Perron. Ensuite, le lien avec un jeu de switching spécifique est établi dans deux cadres. Dans la seconde partie nous étudions les EDSR réfléchies unidimensionnelles à deux obstacles de type mean-field. Par la méthode du point fixe, nous montrons l’existence et l’unicité de la solution dans deux cadres, en fonction de l’intégrabilité des données
This thesis is related to Doubly Reflected Backward Stochastic Differential Equations (DRBSDEs) with two obstacles and their applications in zero-sum stochastic switching games, systems of partial differential equations, mean-field problems.There are two parts in this thesis. The first part deals with optimal stochastic switching and is composed of two works. In the first work we prove the existence of the solution of a system of DRBSDEs with bilateral interconnected obstacles in a probabilistic framework. This problem is related to a zero-sum switching game. Then we tackle the problem of the uniqueness of the solution. Finally, we apply the obtained results and prove that, without the usual monotonicity condition, the associated PDE system has a unique solution in viscosity sense. In the second work, we also consider a system of DRBSDEs with bilateral interconnected obstacles in the markovian framework. The difference between this work and the first one lies in the fact that switching does not work in the same way. In this second framework, when switching is operated, the system is put in the following state regardless of which player decides to switch. This difference is fundamental and largely complicates the problem of the existence of the solution of the system. Nevertheless, in the Markovian framework we show this existence and give a uniqueness result by the Perron’s method. Later on, two particular switching games are analyzed.In the second part we study a one-dimensional Reflected BSDE with two obstacles of mean-field type. By the fixed point method, we show the existence and uniqueness of the solution in connection with the integrality of the data
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Mouzouni, Charafeddine. „Topic in mean field games theory & applications in economics and quantitative finance“. Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEC006.

Der volle Inhalt der Quelle
Annotation:
Les systèmes de jeux à champ moyen (MFG) décrivent des configurations d’équilibre dans des jeux différentiels avec un nombre infini d’agents infinitésimaux. Cette thèse s’articule autour de trois contributions différentes la théorie des jeux à champ moyen. Le but principal est d’explorer des applications et des extensions de cette théorie, et de proposer de nouvelles approches et idées pour traiter les questions mathématiques sous-jacentes. Le premier chapitre introduit en premier lieu les concepts et idées clés que nous utilisons tout au long de la thèse. Nous introduisons le problème MFG et nous expliquons brièvement le lien asymptotique avec les jeux différentiels N-joueurs lorsque N → ∞. Nous présentons ensuite nos principaux résultats et contributions. Le Chapitre 2 explore un modèle MFG avec un mode d’interaction non anticipatif (joueurs myopes). Contrairement aux modèles MFG classiques, nous considérons des agents moins rationnels qui n’anticipent pas l’évolution de l’environnement, mais observent uniquement l’état actuel du système, subissent les changements et prennent des mesures en conséquence. Nous analysons le système couplé d’EDP résultant de ce modèle, et nous établissons le lien rigoureux avec le jeu correspondant à N-Joueurs. Nous montrons que la population d’agents peut s’auto-organiser par un processus d’autocorrection et converger exponentiellement vite vers une configuration d’équilibre MFG bien connue. Les Chapitres 3 et 4 concernent l’application de la théorie MFG pour la modélisation des processus de production et commercialisation de produits avec ressources épuisables (ex. énergies fossiles). Dans le le Chapitre 3, nous proposons une approche variationnelle pour l’étude du système MFG correspondant et analysons la limite déterministe (sans fluctuations de la demande) dans un régime où les ressources sont renouvelables ou abondantes. Nous traitons dans le Chapitre 4 l’approximation MFG en analysant le lien asymptotique entre le modèle de Cournot à N-joueurs et le modèle de Cournot MFG lorsque N est grand. Enfin, le Chapitre 5 considère un modèle MFG pour l’exécution optimale d’un portefeuille d’actifs dans un marché financier. Nous explicitons notre modèle MFG et analysons le système d’EDP résultant, puis nous proposons une méthode numérique pour calculer la stratégie d’exécution optimale pour un agent étant donné son inventaire initial, et présentons plusieurs simulations. Par ailleurs, nous analysons l’influence de l’activité de trading sur la variation intraday de la matrice de covariance des rendements des actifs. Ensuite, nous vérifions nos conclusions et calibrons notre modèle en utilisant des données historiques des transactions pour un pool de 176 actions américaines
Mean Field Game (MFG) systems describe equilibrium configurations in differential games with infinitely many infinitesimal interacting agents. This thesis is articulated around three different contributions to the theory of Mean Field Games. The main purpose is to explore the power of this theory as a modeling tool in various fields, and to propose original approaches to deal with the underlying mathematical questions. The first chapter presents the key concepts and ideas that we use throughout the thesis: we introduce the MFG problem, and we briefly explain the asymptotic link with N-Player differential games when N → ∞. Next we present our main results and contributions, that are explained more in details in the subsequent chapters. In Chapter 2, we explore a Mean Field Game model with myopic agents. In contrast to the classical MFG models, we consider less rational agents which do not anticipate the evolution of the environment, but only observe the current state of the system, undergo changes and take actions accordingly. We analyze the resulting system of coupled PDEs and provide a rigorous derivation of that system from N-Player stochastic differential games models. Next, we show that our population of agents can self-organize and converge exponentially fast to the well-known ergodic MFG equilibrium. Chapters 3 and 4 deal with a MFG model in which producers compete to sell an exhaustible resource such as oil, coal, natural gas, or minerals. In Chapter 3, we propose an alternative approach based on a variational method to formulate the MFG problem, and we explore the deterministic limit (without fluctuations of demand) in a regime where re- sources are renewable or abundant. In Chapter 4 we address the rigorous link between the Cournot MFG model and the N-Player Cournot competition when N is large. In Chapter 5, we introduce a MFG model for the optimal execution of a multi-asset portfolio. We start by formulating the MFG problem, then we compute the optimal execution strategy for a given investor knowing her/his initial inventory and we carry out several simulations. Next, we analyze the influence of the trading activity on the observed intra-day pattern of the covariance matrix of returns and we apply our results in an empirical analysis on a pool of 176 US stocks
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Leutscher, de las Nieves Marcos. „Contributions to the linear programming approach for mean field games and its applications to electricity markets“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAG010.

Der volle Inhalt der Quelle
Annotation:
Cette thèse présente trois contributions principales liées à l'approche de programmation linéaire pour les jeux à champ moyen (MFGs).La première partie de la thèse traite les aspects théoriques des MFGs permettant simultanément arrêt optimal, contrôle stochastique et absorption. En utilisant la formulation de programmation linéaire pour ce type de MFGs, un résultat général d'existence pour les équilibres de Nash MFG est dérivé sous des hypothèses faibles à travers du théorème de point fixe de Kakutani-Fan-Glicksberg. Nous montrons que cette méthode de relaxation est équivalente à l'approche par martingales contrôlées/arrêtées pour les MFG, une autre méthode de relaxation utilisée dans des articles précédents dans le cas du contrôle. De plus, sous des conditions appropriées, nous montrons que notre notion de solution satisfait un système d'équations différentielles partielles (EDP), ce qui permet de comparer nos résultats avec la littérature sur les EDP.La deuxième partie se concentre sur un algorithme numérique pour l'approximation de l'équilibre de Nash MFG en tirant profit de l'approche par programmation linéaire. La convergence de cet algorithme est démontrée pour deux classes de MFG, les MFG avec arrêt optimal et absorption, et les MFG avec contrôle stochastique et absorption. Le schéma numérique appartient à la classe des procédures d'apprentissage. En particulier, nous appliquons l'algorithme Fictitious Play où la meilleure réponse à chaque itération est calculée en résolvant un problème de programmation linéaire.La dernière partie de la thèse porte sur une application des MFGs à la dynamique long terme de l'industrie de l'électricité. Différents scénarios macroéconomiques et de politique climatique sont possibles pour les années à venir, or le scénario exact reste incertain. Par conséquent, les producteurs conventionnels ou renouvelables visant à sortir du marché ou à y entrer, respectivement, sont confrontés à l'incertitude concernant le prix du carbone et les politiques climatiques à venir. Les deux classes de producteurs interagissent par le biais du prix de l'électricité. Des stratégies d'équilibre de Nash sur des temps d'arrêt sont considérées et le problème est analysé à travers d'un modèle MFG. À cette fin, nous développons l'approche de programmation linéaire pour les MFG d'arrêt optimal avec bruit commun et information partielle en temps discret. Nous montrons l'existence d'un équilibre de Nash MFG et l'unicité du prix de marché en équilibre. Enfin, nous étendons l'algorithme numérique développé dans la deuxième partie de la thèse pour illustrer le modèle avec un exemple empirique inspiré du marché de l'électricité britannique
This thesis presents three main contributions related to the linear programming approach for mean field games (MFGs).The first part of the thesis is concerned with the theoretical aspects of MFGs allowing simultaneously for optimal stopping, stochastic control and absorption. Using the linear programming formulation for this type of MFGs, a general existence result for MFG Nash equilibria is derived under mild assumptions by means of Kakutani-Fan-Glicksberg's fixed point theorem. This relaxation method is shown to be equivalent to the controlled/stopped martingale approach for MFGs, another relaxation method used in earlier papers in the pure control case. Furthermore, under appropriate conditions, we show that our notion of solution satisfies a partial differential equation (PDE) system, allowing to compare our results with the PDE literature.The second part focuses on a numerical algorithm for approximating the MFG Nash equilibrium taking advantage of the linear programming approach. The convergence of this algorithm is shown for two classes of MFG, MFGs with optimal stopping and absorption, and MFGs with stochastic control and absorption. The numerical scheme belongs to the class of learning procedures. In particular, we apply the Fictitious Play algorithm where the best response at each iteration is computed by solving a linear programming problem.The last part of the thesis deals with an application of MFGs to the long term dynamics of the electricity industry. Different macroeconomic and climate policy scenarios are possible for the coming years, and the exact scenario remains uncertain. Therefore, conventional or renewable producers aiming to exit or enter the market, respectively, are facing uncertainty about the future carbon price and climate policies. Both classes of producers interact through the electricity market price. Nash equilibrium strategies over stopping times are considered and the problem is analyzed through a MFG model. To this end, we develop the linear programming approach for MFGs of optimal stopping with common noise and partial information in discrete time. We show the existence of an MFG Nash equilibrium and the uniqueness of the equilibrium market price. Finally, we extend the numerical algorithm developed in the second part of the thesis to illustrate the model with an empirical example inspired by the UK electricity market
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Fu, Guanxing. „Maximum Principle for Reflected BSPDE and Mean Field Game Theory with Applications“. Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19248.

Der volle Inhalt der Quelle
Annotation:
Diese Arbeit behandelt zwei Gebiete: stochastische partielle Rückwerts-Differentialgleichungen (BSPDEs) und Mean-Field-Games (MFGs). Im ersten Teil wird über eine stochastische Variante der De Giorgischen Iteration ein Maximumprinzip für quasilineare reflektierte BSPDEs (RBSPDEs) auf allgemeinen Gebieten bewiesen. Als Folgerung erhalten wir ein Maximumprinzip für RBSPDEs auf beschränkten, sowie für BSPDEs auf allgemeinen Gebieten. Abschließend wird das lokale Verhalten schwacher Lösungen untersucht. Im zweiten Teil zeigen wir zunächst die Existenz von Gleichgewichten in MFGs mit singulärer Kontrolle. Wir beweisen, dass die Lösung eines MFG ohne Endkosten und ohne Kosten in der singulären Kontrolle durch die Lösungen eines MFGs mit strikt regulären Kontrollen approximiert werden kann. Die vorgelegten Existenz- und Approximationsresultat basieren entscheidend auf der Wahl der Storokhod M1 Topologie auf dem Raum der Càdlàg-Funktion. Anschließend betrachten wir ein MFG optimaler Portfolioliquidierung unter asymmetrischer Information. Die Lösung des MFG charakterisieren wir über eine stochastische Vorwärts-Rückwärts-Differentialgleichung (FBSDE) mit singulärer Endbedingung der Rückwärtsgleichung oder alternativ über eine FBSDE mit endlicher Endbedingung, jedoch singulärem Treiber. Wir geben ein Fixpunktargument, um die Existenz und Eindeutigkeit einer Kurzzeitlösung in einem gewichteten Funktionenraum zu zeigen. Dies ermöglicht es, das ursprüngliche MFG mit entsprechenden MFGs ohne Zustandsendbedinung zu approximieren. Der zweite Teil wird abgeschlossen mit einem Leader-Follower-MFG mit Zustandsendbedingung im Kontext optimaler Portfolioliquidierung bei hierarchischer Agentenstruktur. Wir zeigen, dass das Problem beider Spielertypen auf singuläre FBSDEs zurückgeführt werden kann, welche mit ähnlichen Methoden wie im vorangegangen Abschnitt behandelt werden können.
The thesis is concerned with two topics: backward stochastic partial differential equations and mean filed games. In the first part, we establish a maximum principle for quasi-linear reflected backward stochastic partial differential equations (RBSPDEs) on a general domain by using a stochastic version of De Giorgi’s iteration. The maximum principle for RBSPDEs on a bounded domain and the maximum principle for BSPDEs on a general domain are obtained as byproducts. Finally, the local behavior of the weak solutions is considered. In the second part, we first establish the existence of equilibria to mean field games (MFGs) with singular controls. We also prove that the solutions to MFGs with no terminal cost and no cost from singular controls can be approximated by the solutions, respectively control rules, for MFGs with purely regular controls. Our existence and approximation results strongly hinge on the use of the Skorokhod M1 topology on the space of càdlàg functions. Subsequently, we consider an MFG of optimal portfolio liquidation under asymmetric information. We prove that the solution to the MFG can be characterized in terms of a forward backward stochastic differential equation (FBSDE) with possibly singular terminal condition on the backward component or, equivalently, in terms of an FBSDE with finite terminal value, yet singular driver. We apply the fixed point argument to prove the existence and uniqueness on a short time horizon in a weighted space. Our existence and uniqueness result allows to prove that our MFG can be approximated by a sequence of MFGs without state constraint. The final result of the second part is a leader follower MFG with terminal constraint arising from optimal portfolio liquidation between hierarchical agents. We show the problems for both follower and leader reduce to the solvability of singular FBSDEs, which can be solved by a modified approach of the previous result.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Grangereau, Maxime. „Contrôle optimal de flexibilités énergétiques en contexte incertain“. Thesis, Institut polytechnique de Paris, 2021. http://www.theses.fr/2021IPPAX010.

Der volle Inhalt der Quelle
Annotation:
Dans cette thèse, nous utilisons des outils provenant du contrôle optimal stochastique et de l'optimisation stochastique et convexe afin de développer des mécanismes pour piloter des moyens de stockage énergétique permettant de gérer l'incertitude de production des sources d'énergie intermittentes (solaire et éolien).Tout d'abord, nous introduisons un mécanisme dans lequel un consommateur s'engage à suivre un profil de consommation sur le réseau, et contrôle ensuite ses systèmes de stockage pour suivre ce profil en temps réel. Nous modélisons cette situation par un problème de contrôle à champ moyen, pour lequel nous obtenons des résultats théoriques et numériques. Puis, nous introduisons un problème de contrôle d'un grand nombre d'unités de stockage thermique soumises à un bruit commun et fournissant des services au réseau. Nous montrons que ce problème de contrôle peut être remplacé par un problème de jeu différentiel stochastique de Stackelberg. Ceci permet un schéma de contrôle décentralisé avec des garanties de performance, tout en préservant la confidentialité des données des consommateurs et en limitant les besoins en télécommunication. Ensuite, nous développons une méthode de Newton pour des problèmes de contrôle stochastique. Nous montrons que le pas de Newton peut être calculé en résolvant des Equations Différentielles Stochastiques Rétrogrades, puis nous proposons une méthode de recherche linéaire appropriée, et prouvons la convergence globale de la methode de Newton obtenue dans un espace adéquat. Sa performance numérique est illustrée sur un problème de contrôle d'un grand nombre de batteries fournissant des services au réseau. Enfin, nous étudions l'extension au cas stochastique multi-étapes du problème "Alternating Current Optimal Power Flow" afin de piloter un réseau électrique équipé de systèmes de stockage. Pour ce problème, nous donnons des conditions réalistes et vérifiables a priori garantissant l'absence de saut de relaxation, ainsi qu'une borne a posteriori sur celui-ci. Dans le cadre plus large de problèmes multi-étapes non-convexes avec une structure générique, nous établissons également des bornes a priori sur le saut de dualité, en nous basant sur des résultats liés au Théorème de Shapley-Folkman
In this PhD dissertation, we use tools from stochastic optimal control, stochastic optimization and convex optimization to design mechanisms to control energy storage systems, to deal with the challenges created by the uncertain production of intermittent energy sources. First, we introduce a commitment mechanism where an individual consumer chooses a consumption profile, then controls its storage devices to track in real-time this profile. We formulate a Mean-Field Control problem to model this situation, for which we establish theoretic and numerical results. Second, we introduce a control problem for a large population of Thermostatically Controlled Loads (TCLs) subject to a common noise and providing ancillary services to the grid. We show that the centralized control problem can be replaced by a stochastic Stackelberg differential game with minimal information-sharing. This allows for a decentralized control scheme with performance guarantees, while preserving privacy of consumers and limiting telecommunication requirements. We then develop a Newton method for stochastic control problems. We show that the computation of the Newton step reduces to solving Backward Stochastic Differential Equations, then we design an appropriate line-search procedure and prove global convergence of the Newton method with line-search in an appropriate space. Its performance is illustrated on a problem of control of a large number of batteries providing services to the grid. Last, a multi-stage stochastic Alternating Current Optimal Power Flow problem is formulated in order to control a power network equipped with energy storage systems. A priori conditions ensuring a vanishing relaxation gap are derived and an easily computable a posteriori bound on the relaxation gap of the problem is given. Using Shapley-Folkman-type results, a priori bounds on the duality gap of non-convex multi-stage stochastic problems with a generic structure are derived
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Messina, Luca. „Multiscale modeling of atomic transport phenomena in ferritic steels“. Doctoral thesis, KTH, Reaktorfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-177525.

Der volle Inhalt der Quelle
Annotation:
Defect-driven transport of impurities plays a key role in the microstructure evolution of alloys, and has a great impact on the mechanical properties at the macroscopic scale. This phenomenon is greatly enhanced in irradiated materials because of the large amount of radiation-induced crystal defects (vacancies and interstitials). For instance, the formation of nanosized solute clusters in neutron-irradiated reactor pressure vessel (RPV) ferritic steels has been shown to hinder dislocation motion and induce hardening and embrittlement. In Swedish RPV steels, this mechanical-property degradation is enhanced by the high content of manganese and nickel impurities. It has been suggested that the formation of Mn-Ni-rich clusters (which contain also Cu, Si, and P) might be the outcome of a dynamic process, where crystal defects act both as nucleation sites and solute carriers. Solute transport by point defects is therefore a crucial mechanism to understand the origin and the dynamics of the clustering process. The first part of this work aims at modeling solute transport by point defects in dilute iron alloys, to identify the intrinsic diffusion mechanisms for a wide range of impurities. Transport and diffusion coefficients are obtained by combining accurate ab initio calculations of defect transition rates with an exact mean-field model. The results show that solute drag by single vacancies is a common phenomenon occurring at RPV temperature (about 300 °C) for all impurities found in the solute clusters, and that transport of phosphorus and manganese atoms is dominated by interstitial-type defects. These transport tendencies confirm that point defects can indeed carry impurities towards nucleated solute clusters. Moreover, the obtained flux-coupling tendencies can also explain the observed radiation-induced solute enrichment on grain boundaries and dislocations. In the second part of this work, the acquired knowledge about solute-transport mechanisms is transferred to kinetic Monte Carlo (KMC) models, with the aim of simulating the RPV microstructure evolution. Firstly, the needed parameters in terms of solute-defect cluster stability and mobility are calculated by means of dedicated KMC simulations. Secondly, an innovative approach to the prediction of transition rates in complex multicomponent alloys is introduced. This approach relies on a neural network based on ab initio-computed migration barriers. Finally, the evolution of the Swedish RPV steels is simulated in a "gray-alloy" fashion, where impurities are introduced indirectly as a modification of the defect-cluster mobilities. The latter simulations are compared to the experimental characterization of the Swedish RPV surveillance samples, and confirm the possibility that solute clusters might form on small interstitial clusters. In conclusion, this work identifies from a solid theoretical perspective the atomic-transport phenomena underlying the formation of embrittling nanofeatures in RPV steels. In addition, it prepares the ground for the development of predictive KMC tools that can simulate the microstructure evolution of a wide variety of irradiated alloys. This is of great interest not only for reactor pressure vessels, but also for many other materials in extreme environments.

QC 20151123

APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Chizat, Lénaïc. „Transport optimal de mesures positives : modèles, méthodes numériques, applications“. Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLED063/document.

Der volle Inhalt der Quelle
Annotation:
L'objet de cette thèse est d'étendre le cadre théorique et les méthodes numériques du transport optimal à des objets plus généraux que des mesures de probabilité. En premier lieu, nous définissons des modèles de transport optimal entre mesures positives suivant deux approches, interpolation et couplage de mesures, dont nous montrons l'équivalence. De ces modèles découle une généralisation des métriques de Wasserstein. Dans une seconde partie, nous développons des méthodes numériques pour résoudre les deux formulations et étudions en particulier une nouvelle famille d'algorithmes de "scaling", s'appliquant à une grande variété de problèmes. La troisième partie contient des illustrations ainsi que l'étude théorique et numérique, d'un flot de gradient de type Hele-Shaw dans l'espace des mesures. Pour les mesures à valeurs matricielles, nous proposons aussi un modèle de transport optimal qui permet un bon arbitrage entre fidélité géométrique et efficacité algorithmique
This thesis generalizes optimal transport beyond the classical "balanced" setting of probability distributions. We define unbalanced optimal transport models between nonnegative measures, based either on the notion of interpolation or the notion of coupling of measures. We show relationships between these approaches. One of the outcomes of this framework is a generalization of the p-Wasserstein metrics. Secondly, we build numerical methods to solve interpolation and coupling-based models. We study, in particular, a new family of scaling algorithms that generalize Sinkhorn's algorithm. The third part deals with applications. It contains a theoretical and numerical study of a Hele-Shaw type gradient flow in the space of nonnegative measures. It also adresses the case of measures taking values in the cone of positive semi-definite matrices, for which we introduce a model that achieves a balance between geometrical accuracy and algorithmic efficiency
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Vasileiadis, Athanasios. „Apprentissage par renforcement à champ moyen : une perspective de contrôle optimal“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5005.

Der volle Inhalt der Quelle
Annotation:
L'apprentissage par renforcement est un paradigme clé de l'apprentissage machine, dont l'objectif est d'inciter les agents à tirer les leçons de leur propre expérience passée afin qu'ils s'améliorent au fil du temps, voir par exemple la monographie [14]. À cet égard, les systèmes impliquant un grand nombre d'agents sont importants pour les applications, mais restent difficiles à traiter du point de vue numérique, voir par exemple le récent post [12]. Le renforcement de l'apprentissage avec plusieurs agents est généralement appelé "apprentissage de renforcement multi-agents" (MARL). Comme démontré dans la publication antérieure [15], cela peut couvrir diverses situations avec des agents opérant individuellement ou collectivement. L'analyse de l'apprentissage par renforcement s'appuie fortement sur les outils mathématiques de la théorie du contrôle et de la théorie des jeux. Tout comme les MARL, les deux peuvent également être confrontés à des difficultés lorsque la dimension augmente. Cela a incité plusieurs auteurs à mettre en œuvre une approche champ moyen, issue de la physique statistique, afin de réduire la complexité globale, voir entre autres les travaux fondateurs de Lasry and Lions [9] et de Huang, Caines et Malhame [7] et les deux monographies [3, 4] sur les jeux à champ moyen et le contrôle champ moyen. L'objectif du doctorat sera de mettre en œuvre une approche similaire de la gestion des MARL. L'idée a été étudiée, au moins pour les agents individuels, dans plusieurs documents récents, voir [8, 10, 13, 16]. Dans ces derniers, non seulement l'approche champ moyen permet de réduire la complexité de façon significative, mais elle fournit également des solutions distribuées (ou décentralisées), qui sont d'une grande utilité pratique. La mise en œuvre numérique est principalement abordée dans [13, 16]. Le lien avec les notions d'apprentissage dans la théorie des jeux est cité dans [10], sur la base d'idées antérieures, voir [2]. La première partie de la thèse consistera à revisiter les travaux existants. Cela demandera en particulier une analyse soigneuse de la stabilité portant à la fois sur le passage d'un système fini d'agents à un système infini et sur l'utilisation de stratégies approximatives (au lieu de stratégies exactes). À la lumière de [2], on peut s'attendre à ce que la monotonie joue un rôle dans l'analyse globale ; une autre orientation, mais plus prospective, consiste à discuter de l'influence d'un environnement stochastique sur le comportement des algorithmes eux-mêmes. Une autre partie de la thèse sera consacrée au cas de la coopération, voir par exemple [5], dont l'analyse s'appuiera sur la théorie du contrôle en champ moyen. Comme mentionné dans [13], des structures potentielles peuvent permettre de faire le lien entre les cas individuel et coopératif ; comme démontré dans [11], ces liens jouent un rôle dans la construction de politiques incitatives
The goal of the PhD will be to implement a similar mean field approach to handle MARL. This idea was investigated, at least for individual agents, in several recent papers. In all of them, not only Mean field approach to MARL (Multi Agent Reinforcement Learning) does the mean field approach allow for a significant decrease of complexity, but it also provides distributed (or decentralized) solutions, which are of a very convenient use in practice. Numerical implementation using either on-or off-policy learning is discussed in the literature. The first part of the thesis will consist in revisiting the former works from a mathematical point of view. In particular, this will ask for a careful stability analysis addressing both the passage from a finite to an infinite system of agents and the use of approximated (instead of exact) policies. We may expect monotonicity to play a key role in the overall analysis; another, but more prospective, direction is to discuss the influence of a stochastic environment onto the behavior of the algorithms themselves. Another part of the thesis will be dedicated to the cooperative case the analysis of which will rely upon mean field control theory. Potential structures may allow to make the connection between individual and cooperative cases. The connection between the two may indeed play an important role for incentive design or, equivalently, for mimicking a cooperative system with individual agents. In this regard, connection with distributional reinforcement learning, may be an interesting question as well
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Mezerdi, Mohamed Amine. „Equations différentielles stochastiques de type McKean-Vlasov et leur contrôle optimal“. Electronic Thesis or Diss., Toulon, 2020. http://www.theses.fr/2020TOUL0014.

Der volle Inhalt der Quelle
Annotation:
Nous considérons les équations différentielles stochastiques (EDS) de Mc Kean-Vlasov, qui sont des EDS dont les coefficients de dérive et de diffusion dépendent non seulement de l'état du processus inconnu, mais également de sa loi de probabilité. Ces EDS, également appelées EDS à champ moyen, ont d'abord été étudiées en physique statistique et représentent en quelque sorte le comportement moyen d'un nombre infini de particules. Récemment, ce type d'équations a suscité un regain d'intérêt dans le contexte de la théorie des jeux à champ moyen. Cette théorie a été inventée par P.L. Lions et J.M. Lasry en 2006, pour résoudre le problème de l'existence d'un équilibre de Nash approximatif pour les jeux différentiels, avec un grand nombre de joueurs. Ces équations ont trouvé des applications dans divers domaines tels que la théorie des jeux, la finance mathématique, les réseaux de communication et la gestion des ressources pétrolières. Dans cette thèse, nous avons étudié les questions de stabilité par rapport aux données initiales, aux coefficients et aux processus directeurs des équations de McKean-Vlasov. Les propriétés génériques de ce type d'équations stochastiques, telles que l'existence et l'unicité, la stabilité par rapport aux paramètres, ont été examinées. En théorie du contrôle, notre attention s'est portée sur l'existence et l'approximation de contrôles relaxés pour les systèmes gouvernés par des EDS de Mc Kean-Vlasov
We consider Mc Kean-Vlasov stochastic differential equations (SDEs), which are SDEs where the drift and diffusion coefficients depend not only on the state of the unknown process but also on its probability distribution. These SDEs called also mean- field SDEs were first studied in statistical physics and represent in some sense the average behavior of an infinite number of particles. Recently there has been a renewed interest for this kind of equations in the context of mean-field game theory. Since the pioneering papers by P.L. Lions and J.M. Lasry, mean-field games and mean-field control theory has raised a lot of interest, motivated by applications to various fields such as game theory, mathematical finance, communications networks and management of oil resources. In this thesis, we studied questions of stability with respect to initial data, coefficients and driving processes of Mc Kean-Vlasov equations. Generic properties for this type of SDEs, such as existence and uniqueness, stability with respect to parameters, have been investigated. In control theory, our attention were focused on existence, approximation of relaxed controls for controlled Mc Kean-Vlasov SDEs
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Bassou, Leila. „Optimal control methods for systemic risk“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX041.

Der volle Inhalt der Quelle
Annotation:
Cette thèse porte sur l'étude des équilibres de Nash du jeu de détentions mutuelles dans différents cadres. Le modèle correspondant, qui a été introduit par M-F. Djete & N. Touzi en 2020, vise à capturer l'interdépendance entre différents agents économiques en tenant compte à la fois des détentions mutuelles de parts entre les entités et de leurs revenus qui peuvent être corrélés.- Dans la première partie, on a étudié le jeu à population finie dans le cadre du critère d'utilité exponentielle. Dans les cas statiques et dynamiques sous une dynamique de type Bachelier gaussienne, on obtient une caractérisation complète des équilibres de Nash et de leurs conditions d'existence.- La deuxième partie est dédiée à l'analyse du jeu à champ moyen avec bruit commun (les revenus sont corrélés), pour le critère moyenne-variance à une période. La résolution de ce problème a fait apparaître une structure liée à une condition de non--arbitrage. Dans ce cadre, on a déterminé une caractérisation explicite de cette condition, ainsi qu'une caractérisation complète des équilibres de Nash.- Dans la troisième partie, on a étendu le jeu à champ moyen avec bruit commun, au cadre du temps continu. Ici, on voit apparaître une condition plus faible de non--arbitrage. Sa caractérisation permet de réduire l'analyse des équilibres de Nash au problème classique d'optimisation de portefeuille avec des dotations aléatoires
This thesis is dedicated to the study of cross-holding game's Nash equilibria in various frameworks. The related model, which was introduced by M-F. Djete & N. Touzi in 2020, aims to capture the interdependence between differenteconomic agents by taking into account, on the one hand, the mutual holding of sharesbetween the entities, and on the other hand, their incomes that can be correlated.- The first part is devoted to the finite population game within the framework of the exponential utility criterion. In the static and dynamic settings under gaussian Bachelier type dynamic, we completely characterize the Nash equilibria and their existence conditions.- The second part is dedicated to the one-period mean field game with common noise (the revenues are correlated), by considering the mean-variance criterion. The formulation of the problem reveals a No-arbitrage condition. In this framework, we characterized explicitly this condition, as well as the mean field equilibria.- In the third part, we extended the study of the mean-field game, with common noise, to the continuous time setting. Here, the problem reveals a weak notion of No-arbitrage condition. The characterization of this condition reduces the analysis of the mean field equilibria to the classical problem of optimal portfolio with random endowment
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Phung, Thu. „Études numériques du magnétisme et du transport dans des dispositifs nanoscopiques de graphène“. Thesis, Cergy-Pontoise, 2019. http://www.theses.fr/2019CERG1048.

Der volle Inhalt der Quelle
Annotation:
Les matériaux à deux dimensions retiennent l’attention d’un grand nombre physi-ciens de la matière condensées du fait leur applications potentielles. Parmi eux, le 'graphène' a été l’objet de nombreuses études depuis la première analyse expérimentale d’un plan d’atomes de carbone en 2004. Ses propriétés inhabituelles en font un bon candidat pour remplacer le silicium. Les nano-structures en nid d’abeille, telles que les ’dots’ quantiques, apparaissent comme des briques élémentaires pour des nouveaux microcircuits électroniques. Les propriétés de ces nano-structures sont déterminées principalement par les bords qui sont à l’origine d’états de basses énergies – canaux de bords – gouvernant les propriétés de transport. En outre les bords en configuration zigzag, qui favorisent les corrélations électroniques, sont à l’origine d’un état magnétique alors que le graphène infini est non magnétique. La combinaison possible de ces propriétés font de cet nano-matériaux de bons candidats pour des applications en spintronique.Ce travail de thèse contribue à la compréhension théorique des ces phénomènes.Concrètement, nous utilisons une approche de champ moyen pour calculer les pro-priétés magnétiques et de transport de nano-flaques de graphène. Pour cela nousutilisons un modèle de Hubbard avec énergies d’interaction de Coulomb sur site.Des études antérieures ont montré que la méthode du champ moyen donne de bons résultats pour traiter les interactions, y compris pour l’étude des propriétésdynamiques. Techniquement, lorsque un état de champ moyen a été déterminéde façon auto-cohérente, le problème est équivalent à celui d’électrons sans interaction. La première partie de la thèse est consacrée au graphène infini, dont le résultat en champ moyen dans l’approximation de Hartree-Fock est connu, pour étudier l’effet du couplage spin-orbite sur les interactions électroniques et évaluer la précision de la méthode par rapport aux autres méthodes numériques. Nous montrons, entre autres, que le semi-métal de gap nul (sans spin-orbite) et l’isolant topologique (avec spin-orbite) sont stables pour des valeurs faibles et intermédiaires de l’interaction électron-électron, alors qu’un état anti-ferromagnétique apparait aux fortes interactions. L’ordre anti-ferromagnétique sans spin-orbite est un ordre de Néel et un ordre plan simple avec spin-orbite. La deuxième partie est consacrée à l’étude du magnétisme des nano-flaques de graphène sans tenir compte du couplage spin-orbite. L’apparition du moment magnétique aux bords des flaques dépend directement de leur taille, leur géométrie et la configuration de leurs bords. L’origine du magnétisme de bords est due aux états de bords localisés lorsque les bords sont en configuration ’zigzag’ alors que ces états disparaissent lorsque les bords sont en configuration ’armchair’. La dernière partie est consacrée à l’étude du transport résolu en spin (spin up et spin down) d’une nano-flaque hexagonale magnétique en contact avec deux réservoirs ayant des températures différentes, par la méthode des fonctions de Green hors équilibre combinée aux résultats en champ moyen. Lorsque la différence de température entre les réservoirs est non nulle, des courants de spin up et down circulent en sens opposés dans la nano-flaque de graphène. Cela est du aux différences de concentration de porteurs de charge dans les deux réservoirs, déterminée par la distribution de Fermi-Dirac, et le coefficient de transmission de la nano-flaque. Nos calculs montrent qu’un effet Seebeck parfait, c’est à dire un pur courant du spin sans courant de charge, un fort filtrage de spin et une amplification du courant de spin, peut être obtenu pour certaines valeurs des températures des réservoirs, du gradient de température et de la tension de grille appliquée. Ces résultats ouvrent la voie vers de nouvelles applications des nano-flaques de graphène dans le domaine de la spin-caloritronique
2D materials are attracting attention from a big research community in solid-state physics because of a large number of applications. Among these materials 'graphene' has been at the focus of attention ever since its experimental realization as a single layer of carbon atoms in 2004 as an alternative to silicon due to its many unusual properties. Honeycomb nanostructures such as quantum dots constitute fundamental building blocks for potential device applications. Essential ingredients of such nanostructures are provided by the edges since they give rise to low-energy excitations. Accordingly, such edge channels will dominate the transport of a nano-device. Furthermore, zigzag edges are unstable with respect to interactions such that one may get magnetism at these edges even if for example bulk graphene is non-magnetic. The combination of both factors bears promise for spintronic applications.The current work contributes to the theoretical understanding of the aforementioned phenomena. Concretely, we use a single-band Hubbard model with an on-site Coulomb interaction combined with the mean-field theory in order to compute the magnetic and transport properties of graphene nanoflakes. Previous investigations have shown that a mean-field decoupling of the interaction yields surprisingly accurate answers even for dynamical properties. At a technical level, once a static mean-field has been determined self-consistently, the problem is reduced to non-interacting electrons. A first part of this thesis revisits the Hartree-Fock mean-field approximation for bulk graphene to study the impact of electron-electron interaction with and without spin-orbit coupling and concurrently assess its accuracy by comparing with other numerical methods. The gapless semi-metal (for zero spin-orbit coupling) and the topological band insulator (for nonzero spin-orbit coupling) are stable for weak to intermediate electron-electron interaction, and undergo a transition to an antiferromagnetic phase at strong interaction. The antiferromagnetic order is of the Néel type without spin-orbit coupling, and of the easy-plane type with spin-orbit coupling. The systematic investigation of magnetism on graphenenanoflakes is the second part of the present work when ignoring the spin-orbit coupling. The onset of the edge magnetic moment strictly depends on the size of the graphene nanoflakes, the geometry and the edge termination. Herein, the origin of the magnetism on the edges of graphene nanoflakes is attributed to the localized edge states in zigzag edges which vanish in armchair edges. A final part of the dissertation investigates spin-resolved transport properties depending on the thermal bias, typically the transport of charge carriers via spin-up and spin-down channels, in a magnetic hexagonal graphene nanoflake connected with two metallic leads. As a temperature difference is applied, significant spin-up and spin-down currents, which are computed using the non-equilibrium Green’s Function technique combined with the mean-field theory, flow in opposite directions through the graphene nanoflakes. This is the consequence of the imbalance of charge carrier concentrations, which is determined by the Fermi-Dirac distribution at the two leads, and transmission spectra. Furthermore, our calculations show that a perfect spin-Seebeck effect, a purespin current without charge current, a high spin-filtering effect as well as the amplification of spin current can be obtained by tuning the temperature at the leads, the temperature gradient and the back-gate voltage. These results pave the way for new application potential of the graphene nanoflakes in the field of spin caloritronics
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Merino, Aceituno Sara. „Contributions in fractional diffusive limit and wave turbulence in kinetic theory“. Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/256994.

Der volle Inhalt der Quelle
Annotation:
This thesis is split in two different topics. Firstly, we study anomalous transport from kinetic models. Secondly, we consider the equations coming from weak wave turbulence theory and we study them via mean-field limits of finite stochastic particle systems. $\textbf{Anomalous transport from kinetic models.}$ The goal is to understand how fractional diffusion arises from kinetic equations. We explain how fractional diffusion corresponds to anomalous transport and its relation to the classical diffusion equation. In previous works it has been seen that particles systems undergoing free transport and scattering with the media can give rise to fractional phenomena in two cases: firstly, if in the dynamics of the particles there is a heavy-tail equilibrium distribution; and secondly, if the scattering rate is degenerate for small velocities. We use these known results in the literature to study the emergence of fractional phenomena for some particular kinetic equations. Firstly, we study BGK-type equations conserving not only mass (as in previous results), but also momentum and energy. In the hydrodynamic limit we obtain a fractional diffusion equation for the temperature and density making use of the Boussinesq relation and we also demonstrate that with the same rescaling fractional diffusion cannot be derived additionally for the momentum. But considering the case of conservation of mass and momentum only, we do obtain the incompressible Stokes equation with fractional diffusion in the hydrodynamic limit for heavy-tailed equilibria. Secondly, we will study diffusion phenomena arising from transport of energy in an anharmonic chain. More precisely, we will consider the so-called FPU-$\beta$ chain, which is a very simple model for a one-dimensional crystal in which atoms are coupled to their nearest neighbours by a harmonic potential, weakly perturbed by a nonlinear quartic potential. The starting point of our mathematical analysis is a kinetic equation; lattice vibrations, responsible for heat transport, are modelled by an interacting gas of phonons whose evolution is described by the Boltzmann Phonon Equation. Our main result is the derivation of an anomalous diffusion equation for the temperature. $\textbf{Weak wave turbulence theory and mean-field limits for stochastic particle systems.}$ The isotropic 4-wave kinetic equation is considered in its weak formulation using model homogeneous kernels. Existence and uniqueness of solutions is proven in a particular setting. We also consider finite stochastic particle systems undergoing instantaneous coagulation-fragmentation phenomena and give conditions in which this system approximates the solution of the equation (mean-field limit).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Masoero, Marco. „On the long time behavior of potential MFG“. Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLED057.

Der volle Inhalt der Quelle
Annotation:
Cette thèse porte sur l’étude du comportement en temps long des jeux à champ moyen (MFG) potentiels, indépendamment de la convexité du problème de minimisation associé. Pour le système hamiltonien de dimension finie, des problèmes de même nature ont été traités par la théorie KAM faible. Nous transposons de nombreux résultats de cette théorie dans le contexte des jeux à champ moyen potentiels. Tout d'abord, nous caractérisons par approximation ergodique la valeur limite associée aux systèmes MFG à horizon fini. Nous fournissons des exemples explicites dans lesquels cette valeur est strictement supérieure au niveau d’énergie des solutions stationnaires du système MFG ergodique. Cela implique que les trajectoires optimales des systèmes MFG à horizon fini ne peuvent pas converger vers des configurations stationnaires. Ensuite, nous prouvons la convergence du problème de minimisation associé à MFG à horizon fini vers une solution de l’équation Hamilton-Jacobi critique dans l’espace de mesures de probabilité. De plus, nous montrons une limite de champ moyen pour la constante ergodique associée à l’équation Hamilton-Jacobi de dimension finie correspondante. Dans la dernière partie, nous caractérisons la limite du problème de minimisation à horizon infini que nous avons utilisé pour l'approximation ergodique dans la première partie du manuscrit
The purpose of this thesis is to shed some light on the long time behavior of potential Mean Field Games (MFG), regardless of the convexity of the minimization problem associated. For finite dimensional Hamiltonian systems, problems of the same nature have been addressed through the so-called weak KAM theory. We transpose many results of this theory in the infinite dimensional context of potential MFG. First, we characterize through an ergodic approximation the limit value associated to time dependent MFG systems. We provide explicit examples where this value is strictly greater than the energy level of stationary solutions of the ergodic MFG system. This implies that optimal trajectories of time dependent MFG systems cannot converge to stationary configurations. Then, we prove the convergence of the minimization problem associated to time dependent MFGs to a solution of the critical Hamilton-Jacobi equation in the space of probability measures. In addition, we show a mean field limit for the ergodic constant associated with the corresponding finite dimensional Hamilton-Jacobi equation. In the last part we characterize the limit of the infinite horizon discounted minimization problem that we use for the ergodic approximation in the first part of the manuscript
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Fernandez, Montero Alejandro. „Champ moyen local et transport de l’énergie dans des systèmes hors équilibre“. Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX044.

Der volle Inhalt der Quelle
Annotation:
Les systèmes de chaînes d’oscillateurs permettent de modéliser microscopiquement un solide, dans le but d’étudier le transport d’énergie et de retrouver la loi de Fourier. Dans cette thèse, nous introduisons des nouveaux modèles de chaînes d’oscillateurs avec interaction mécanique de type champ moyen local et collisions stochastiques préservant l’énergie totale du système. Le premier modèle est un modèle avec échanges stochastiques de vitesses de type modèle de Kac. Le second est un modèle avec retournement de vitesses, où les vitesses sont changées en leurs opposées à des temps aléatoires.Contrairement à la théorie classique des modèles de champ moyen, les particules du système ne sont pas indistinguables, et le caractère conservatif des échanges stochastiques pour le premier modèle représente une difficulté supplémentaire dans la preuve d’une limite de Vlasov. Nous prouvons dans un premier temps une limite quantitative de champ moyen, que nous utilisons ensuite pour prouver que l’énergie évolue diffusivement à une échelle de temps donnée pour le modèle avec échanges à longue portée pour une classe restreinte de potentiels anharmoniques. À cette même échelle de temps, nous prouvons également que l’énergie n’évolue pas pour le modèle avec retournement de vitesses.Dans le cas d'interactions harmoniques, nous calculons ensuite la conductivité thermique via la formule de Green-Kubo pour ces deux modèles, afin de mettre en évidence que l’échelle de temps à laquelle l’énergie évolue pour le modèle avec retournements de vitesses est plus longue et donc que les mécanismes en jeu dans le transport d’énergie sont différents
Chains of oscillator systems enable to model microscopically a solid, in order to study energy transport and prove Fourier’s law. In this thesis, we introduce two new models of chains of oscillators with local mean field mechanical interaction and stochastic collisions that preserve the system’s total energy. The first model is a model with stochastic velocity exchanges of Kac type. The second one is a model with random flips of velocities, where the sign of the particles’ velocities is changed at random times.As we consider local mean field models, particles are not indistinguishable, and the conservative stochastic exchanges in our first model are an additional difficulty for the proof of a Vlasov limit. We first derive a quantitative mean field limit, that we then use to prove that energy evolves diffusively at a given timescale for the model with long-range exchanges and for a restricted class of anharmonic potentials. At the same timescale, we also prove that there is no evolution of energy for the model with flips of velocities.For harmonic interactions, we then compute thermal conductivity via Green-Kubo formula for both models, to highlight that the timescale at which energy evolves for the model with velocity flips is longer and therefore that the mechanisms at play for energy transport are different
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Dao, Manh-Khang. „Équation de Hamilton-Jacobi et jeux à champ moyen sur les réseaux“. Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S042/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse porte sur l'étude d'équation de Hamilton-Jacobi-Bellman associées à des problèmes de contrôle optimal et de jeux à champ moyen avec la particularité qu'on se place sur un réseau (c'est-à-dire, des ensembles constitués d'arêtes connectées par des jonctions) dans les deux problèmes, pour lesquels on autorise différentes dynamiques et différents coûts dans chaque bord d'un réseau. Dans la première partie de cette thèse, on considère un problème de contrôle optimal sur les réseaux dans l'esprit des travaux d'Achdou, Camilli, Cutrì & Tchou (2013) et Imbert, Moneau & Zidani (2013). La principale nouveauté est qu'on rajoute des coûts d'entrée (ou de sortie) aux sommets du réseau conduisant à une éventuelle discontinuité de la fonction valeur. Celle-ci est caractérisée comme l'unique solution de viscosité d'une équation Hamilton-Jacobi pour laquelle une condition de jonction adéquate est établie. L'unicité est une conséquence d'un principe de comparaison pour lequel nous donnons deux preuves différentes, l'une avec des arguments tirés de la théorie du contrôle optimal, inspirée par Achdou, Oudet & Tchou (2015) et l'autre basée sur les équations aux dérivées partielles, d'après Lions & Souganidis (2017). La deuxième partie concerne les jeux à champ moyen stochastiques sur les réseaux. Dans le cas ergodique, ils sont décrits par un système couplant une équation de Hamilton-Jacobi-Bellman et une équation de Fokker- Planck, dont les inconnues sont la densité m de la mesure invariante qui représente la distribution des joueurs, la fonction valeur v qui provient d'un problème de contrôle optimal "moyen" et la constante ergodique ρ. La fonction valeur v est continue et satisfait dans notre problème des conditions de Kirchhoff aux sommets très générales. La fonction m satisfait deux conditions de transmission aux sommets. En particulier, due à la généralité des conditions de Kirchhoff, m est en général discontinue aux sommets. L'existence et l'unicité d'une solution faible sont prouvées pour des Hamiltoniens sous-quadratiques et des hypothèses très générales sur le couplage. Enfin, dans la dernière partie, nous étudions les jeux à champ moyen stochastiques non stationnaires sur les réseaux. Les conditions de transition pour la fonction de valeur v et la densité m sont similaires à celles données dans la deuxième partie. Là aussi, nous prouvons l'existence et l'unicité d'une solution faible pour des Hamiltoniens sous-linéaires et des couplages et dans le cas d'un couplage non-local régularisant et borné inférieurement. La principale difficulté supplémentaire par rapport au cas stationnaire, qui nous impose des hypothèses plus restrictives, est d'établir la régularité des solutions du système posé sur un réseau. Notre approche consiste à étudier la solution de l'équation de Hamilton-Jacobi dérivée pour gagner de la régularité sur la solution de l'équation initiale
The dissertation focuses on the study of Hamilton-Jacobi-Bellman equations associated with optimal control problems and mean field games problems in the case when the state space is a network. Different dynamics and running costs are allowed in each edge of the network. In the first part of this thesis, we consider an optimal control on networks in the spirit of the works of Achdou, Camilli, Cutrì & Tchou (2013) and Imbert, Monneau & Zidani (2013). The main new feature is that there are entry (or exit) costs at the edges of the network leading to a possible discontinuous value function. The value function is characterized as the unique viscosity solution of a Hamilton-Jacobi equation for which an adequate junction condition is established. The uniqueness is a consequence of a comparison principle for which we give two different proofs. One uses some arguments from the theory of optimal control and is inspired by Achdou, Oudet & Tchou (2015). The other one is based on partial differential equations techniques and is inspired by a recent work of Lions & Souganidis (2017). The second part is about stochastic mean field games for which the state space is a network. In the ergodic case, they are described by a system coupling a Hamilton- Jacobi-Bellman equation and a Fokker-Planck equation, whose unknowns are the density m of the invariant measure which represents the distribution of the players, the value function v which comes from an "average" optimal control problem and the ergodic constant ρ. The function v is continuous and satisfies general Kirchhoff conditions at the vertices. The density m satisfies dual transmission conditions. In particular, due to the generality of Kirchhoff’s conditions, m is in general discontinuous at the vertices. Existence and uniqueness are proven for subquadratic Hamiltonian and very general assumptions about the coupling term. Finally, in the last part, we study non-stationary stochastic mean field games on networks. The transition conditions for value function v and the density m are similar to the ones given in second part. Here again, we prove the existence and uniqueness of a weak solution for sublinear Hamiltonian and bounded non-local regularizing coupling term. The main additional difficulty compared to the stationary case, which imposes us more restrictive hypotheses, is to establish the regularity of the solutions of the system placed on a network. Our approach is to study the solution of the derived Hamilton-Jacobi equation to gain regularity over the initial equation
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Hadikhanloo, Saeed. „Apprentissage dans les jeux à champ moyen“. Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED001/document.

Der volle Inhalt der Quelle
Annotation:
Les jeux à champ moyen (MFG) sont une classe de jeux différentiels dans lequel chaque agent est infinitésimal et interagit avec une énorme population d'agents. Dans cette thèse, nous soulevons la question de la formation effective de l'équilibre MFG. En effet, le jeu étant très complexe, il est irréaliste de supposer que les agents peuvent réellement calculer la configuration d'équilibre. Cela semble indiquer que si la configuration d'équilibre se présente, c'est parce que les agents ont appris à jouer au jeu. Donc, la question principale est de trouver des procédures d'apprentissage dans les jeux à champ moyen et d'analyser leurs convergences vers un équilibre. Nous nous sommes inspirés par des schémas d'apprentissage dans les jeux statiques et avons essayé de les appliquer à notre modèle dynamique de MFG. Nous nous concentrons particulièrement sur les applications de fictitious play et online mirror descent sur différents types de jeux de champs moyens : Potentiel, Monotone ou Discret
Mean Field Games (MFG) are a class of differential games in which each agent is infinitesimal and interacts with a huge population of other agents. In this thesis, we raise the question of the actual formation of the MFG equilibrium. Indeed, the game being quite involved, it is unrealistic to assume that the agents can compute the equilibrium configuration. This seems to indicate that, if the equilibrium configuration arises, it is because the agents have learned how to play the game. Hence the main question is to find learning procedures in mean field games and investigating if they converge to an equilibrium. We have inspired from the learning schemes in static games and tried to apply them to our dynamical model of MFG. We especially focus on fictitious play and online mirror descent applications on different types of mean field games; those are either Potential, Monotone or Discrete
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Zorkot, Ahmad. „Approximation de jeux à champ moyen“. Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0026.

Der volle Inhalt der Quelle
Annotation:
L’objectif de la théorie des jeux à champ moyen est d’étudier une classe de jeux différentiels (déterministes ou stochastiques) comportant un grand nombre de joueurs. Étant donné que très peu de jeux à champ moyen admettent des solutions explicites, les méthodes numériques jouent un rôle essentiel dans la description quantitative, mais aussi qualitative, des équilibres de Nash associés. Cette thèse se concentrera sur des techniques numériques utilisées pour résoudre diverses classes de jeux à champ moyen
The purpose of the theory of mean field games is to study a class of differential games (deterministic or stochastic) with a large number of agents. Since very few mean field games admit explicit solutions, numerical methods play an essential role in describing quantitatively, and also qualitatively, the associated Nash equilibria. This thesis is focused on numerical techniques to solve several types of mean field game problems
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Duran, Santiago. „Resource allocation with observable and unobservable environments“. Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30018.

Der volle Inhalt der Quelle
Annotation:
Cette thèse étudie les problèmes d'allocation des ressources dans les réseaux stochastiques à grande échelle dans lesquels les paramètres fluctuent dans le temps. Nous supposons que l'état du système est formé de deux processus, une partie contrôlable dont l'évolution dépend de l'action du décideur et la partie environnement dont l'évolution est exogène. L'évolution stochastique du processus contrôlable dépend de l'état actuel de l'environnement. Selon que le décideur observe l'état de l'environnement, nous disons que l'environnement est observable ou non observable.La thèse suit trois axes de recherche principaux. Dans le premier problème, nous étudions le contrôle optimal d'un problème de bandit agité multi-bras MARBP avec un environnement inobservable. L'objectif est de caractériser la politique optimale de maîtrise du processus contrôlable malgré le fait que l'environnement ne peut pas être observé. Nous considérons le régime asymptotique à grande échelle dans lequel le nombre de bandits et la vitesse de l'environnement tendent tous deux à l'infini. Dans notre résultat principal, nous établissons qu'un ensemble de politiques prioritaires est asymptotiquement optimal. Nous montrons que cet ensemble comprend notamment l'indice de Whittle d'un système dont les paramètres sont moyennés sur le comportement stationnaire de l'environnement. Dans le second problème, nous considérons un MARBP avec un environnement observable. L'objectif est de tirer parti des informations sur l'environnement pour dériver une politique optimale pour le processus contrôlable. En supposant que la condition technique d'indexabilité soit vérifiée, nous développons un algorithme pour calculer numériquement l'indice de Whittle. Nous appliquons ensuite ce résultat au cas particulier d'une file d'attente avec abandon. Nous établissons une indexabilité, et nous obtenons des caractérisations de l'indice de Whittle sous forme fermée. Dans le troisième problème, nous considérons un modèle d'allocation de fichiers dans un grand système de stockage, où il y a des fichiers répartis sur un ensemble de nœuds. Chaque nœud tombe en panne selon une loi qui dépend de la charge qu'il gère. Chaque fois qu'un nœud tombe en panne, tous les fichiers qu'il possédait sont réalloués selon une stratégie d'allocation fixe, et le nœud redémarre son travail en étant vide. Nous étudions l'évolution de la charge d'un nœud dans le régime de champ moyen, lorsque le nombre de fichiers et le nombre de nœuds deviennent importants. Nous prouvons l'existence et l'unicité de la mesure de probabilité stationnaire du processus, et la convergence dans la distribution de cette mesure
This thesis studies resource allocation problems in large-scale stochastic networks. We work on problems where the availability of resources is subject to time fluctuations, a situation that one may encounter, for example, in load balancing systems or in wireless downlink scheduling systems. The time fluctuations are modelled considering two types of processes, controllable processes, whose evolution depends on the action of the decision maker, and environment processes, whose evolution is exogenous. The stochastic evolution of the controllable process depends on the the current state of the environment. Depending on whether the decision maker observes the state of the environment, we say that the environment is observable or unobservable. The mathematical formulation used is the Markov Decision Processes (MDPs).The thesis follows three main research axes. In the first problem we study the optimal control of a Multi-armed restless bandit problem (MARBP) with an unobservable environment. The objective is to characterise the optimal policy for the controllable process in spite of the fact that the environment cannot be observed. We consider the large-scale asymptotic regime in which the number of bandits and the speed of the environment both tend to infinity. In our main result we establish that a set of priority policies is asymptotically optimal. We show that, in particular, this set includes Whittle index policy of a system whose parameters are averaged over the stationary behaviour of the environment. In the second problem, we consider an MARBP with an observable environment. The objective is to leverage information on the environment to derive an optimal policy for the controllable process. Assuming that the technical condition of indexability holds, we develop an algorithm to compute Whittle's index. We then apply this result to the particular case of a queue with abandonments. We prove indexability, and we provide closed-form expressions of Whittle's index. In the third problem we consider a model of a large-scale storage system, where there are files distributed across a set of nodes. Each node breaks down following a law that depends on the load it handles. Whenever a node breaks down, all the files it had are reallocated to other nodes. We study the evolution of the load of a single node in the mean-field regime, when the number of nodes and files grow large. We prove the existence of the process in the mean-field regime. We further show the convergence in distribution of the load in steady state as the average number of files per node tends to infinity
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Laguzet, Laetitia. „Modélisation mathématique et numérique des comportements sociaux en milieu incertain. Application à l'épidémiologie“. Thesis, Paris 9, 2015. http://www.theses.fr/2015PA090058/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse propose une étude mathématique des stratégies de vaccination.La partie I présente le cadre mathématique, notamment le modèle à compartiments Susceptible - Infected – Recovered.La partie II aborde les techniques mathématiques de type contrôle optimal employées afin de trouver une stratégie optimale de vaccination au niveau de la société. Ceci se fait en minimisant le coût de la société. Nous montrons que la fonction valeur associée peut avoir une régularité plus faible que celle attendue dans la littérature. Enfin, nous appliquons les résultats à la vaccination contre la coqueluche.La partie III présente un modèle où le coût est défini au niveau de l'individu. Nous reformulons le problème comme un équilibre de Nash et comparons le coût obtenu avec celui de la stratégie sociétale. Une application à la grippe A(H1N1) indique la présence de perceptions différentes liées à la vaccination.La partie IV propose une implémentation numérique directe des stratégies présentées
This thesis propose a mathematical analysis of the vaccination strategies.The first part introduces the mathematical framework, in particular the Susceptible – Infected – Recovered compartmental model.The second part introduces the optimal control tools used to find an optimal vaccination strategy from the societal point of view, which is a minimizer of the societal cost. We show that the associated value function can have a less regularity than what was assumed in the literature. These results are then applied to the vaccination against the whooping cough.The third part defines a model where the cost is defined at the level of the individual. We rephrase this problem as a Nash equilibrium and compare this results with the societal strategy. An application to the Influenza A(H1N1) 2009-10 indicates the presence of inhomogeneous perceptions concerning the vaccination risks.The fourth and last part proposes a direct numerical implementation of the different strategies
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Chaudru, de Raynal Paul Éric. „Équations différentielles stochastiques : résolubilité forte d'équations singulières dégénérées ; analyse numérique de systèmes progressifs-rétrogrades de McKean-Vlasov“. Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00954417.

Der volle Inhalt der Quelle
Annotation:
Cette thèse traite de deux sujets: la résolubilité forte d'équations différentielles stochastiques à dérive hölderienne et bruit hypoelliptique et la simulation de processus progressifs-rétrogrades découplés de McKean-Vlasov. Dans le premier cas, on montre qu'un système hypoelliptique, composé d'une composante diffusive et d'une composante totalement dégénérée, est fortement résoluble lorsque l'exposant de la régularité Hölder de la dérive par rapport à la composante dégénérée est strictement supérieur à 2/3. Ce travail étend au cadre dégénéré les travaux antérieurs de Zvonkin (1974), Veretennikov (1980) et Krylov et Röckner (2005). L'apparition d'un seuil critique pour l'exposant peut-être vue comme le prix à payer pour la dégénérescence. La preuve repose sur des résultats de régularité de la solution de l'EDP associée, qui est dégénérée, et est basée sur une méthode parametrix. Dans le second cas, on propose un algorithme basé sur les méthodes de cubature pour la simulation de processus progessifs-rétrogrades découplés de McKean-Vlasov apparaissant dans des problèmes de contrôle dans un environnement de type champ moyen. Cet algorithme se divise en deux parties. Une première étape de construction d'un arbre de particules, à dynamique déterministe, approchant la loi de la composante progressive. Cet arbre peut être paramétré de manière à obtenir n'importe quel ordre d'approximation (en terme de pas de discrétisation de l'intervalle). Une seconde étape, conditionnelle à l'arbre, permettant l'approximation de la composante rétrograde. Deux schémas explicites sont proposés permettant un ordre d'approximation de 1 et 2.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Carrapatoso, Kléber. „Théorèmes asymptotiques pour les équations de Boltzmann et de Landau“. Phd thesis, Université Paris Dauphine - Paris IX, 2013. http://tel.archives-ouvertes.fr/tel-00920455.

Der volle Inhalt der Quelle
Annotation:
Nous nous intéressons dans cette thèse à la théorie cinétique et aux systèmes de particules dans le cadre des équations de Boltzmann et Landau. Premièrement, nous étudions la dérivation des équations cinétiques comme des limites de champ moyen des systèmes de particules, en utilisant le concept de propagation du chaos. Plus précisément, nous étudions les probabilités chaotiques sur l'espace de phase de ces systèmes de particules : la sphère de Boltzmann, qui correspond à l'espace de phase d'un système de particules qui évolue conservant le moment et l'énergie ; et la sphère de Kac, correspondant à un système de particules qui conserve seulement l'énergie. Ensuite, nous nous intéressons à la propagation du chaos, avec des estimations quantitatives et uniforme en temps, pour les équations de Boltzmann et Landau. Deuxièmement, nous étudions le comportement asymptotique en temps grand des solutions de l'équation de Landau.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Seneci, Tommaso. „Displacement Convexity for First-Order Mean-Field Games“. Thesis, 2018. http://hdl.handle.net/10754/627746.

Der volle Inhalt der Quelle
Annotation:
In this thesis, we consider the planning problem for first-order mean-field games (MFG). These games degenerate into optimal transport when there is no coupling between players. Our aim is to extend the concept of displacement convexity from optimal transport to MFGs. This extension gives new estimates for solutions of MFGs. First, we introduce the Monge-Kantorovich problem and examine related results on rearrangement maps. Next, we present the concept of displacement convexity. Then, we derive first-order MFGs, which are given by a system of a Hamilton-Jacobi equation coupled with a transport equation. Finally, we identify a large class of functions, that depend on solutions of MFGs, which are convex in time. Among these, we find several norms. This convexity gives bounds for the density of solutions of the planning problem.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Pakhira, Nandan. „Spectral And Transport Properties Of Falicov-Kimball Related Models And Their Application To Manganites“. Thesis, 2009. https://etd.iisc.ac.in/handle/2005/660.

Der volle Inhalt der Quelle
Annotation:
From the time of the unexpected discovery of the insulating nature of NiO by Verwey half a century ago, Oxide materials have continued to occupy the centre stage of condensed matter physics. The recent discovery of high temperature superconductivity in doped cuprates has given a new impetus to the study of the strongly correlated electron systems. Besides, the occurrence of Colossal Magneto-Resistance (CMR) in doped rare earth manganite has also created renewed interest in these rather old systems. Understanding of the rich and complex phase diagram of these materials and their sensitivity to small perturbations e.g. external magnetic field of a few Tesla, temperature, change in isotope etc. are of great theoretical interest and also these materials have many potential technological applications. A common feature of all these oxide materials is that the transition metal ions have partially filled d-shells. Unlike s and p-electrons which gives rise to hybridized Bloch states, the d-electrons retain their atomic nature in a solid. This gives rise to strong Coulomb interaction among d-electrons which may be comparable or more than its kinetic energy. The strong correlation effects are evident from the experimental fact that the undoped parent compounds are insulators rather than metals as suggested by band theory, which favours a metallic state for systems with one electron per unit cell since this gives rise to partially filled bands (and hence a metallic state). These insulators termed Mott insulators, arise solely due to strong electron-electron correlations as compared to the band insulators which arise due to complete filling of one electron bands thereby giving rise to a gap (band gap)in the excitation spectra. The delicate competition between the kinetic energy and the Coulomb energy for d-electrons is broadly responsible for the wide variety of phenomena like Mott metal-insulator transition (MIT), magnetic transitions, charge ordering, orbital ordering, ferro/antiferroelectricity, and most interestingly the observation of high Tc superconductivity in doped cuprates. In this thesis we will restrict our interest to one such class of oxide materials, namely the doped rare earth manganites. In Chapter 1 we give a brief overview of the structure and basic interactions present in the doped manganites. Also, in the same Chapter we give a brief introduction to the phenomenology of manganites, particularly its phase diagram in the doping and temperature plane and various experimental features, e.g. the wide variety of phase transitions and phenomena particularly the observation of CMR, charge ordering and incipient meso-scale phase separations etc.. Then we briefly introduce a recently proposed microscopic model which is believed to be a minimal model which, for the first time, includes the three most important interactions present in the manganites namely the following -1)coupling of the orbitally degenerate eg electrons to local lattice distortions of Jahn-Teller type which gives rise to two species of electrons. The one denoted by by ℓ is associated with Jahn-Teller effects and hence is localized whereas the other denoted by b is an extended state and propagates through the lattice. 2) The strong Hund’s couplingof ℓ and b electrons to the t2g core spin and 3) the strong Coulomb correlation between the two species of electrons. Additionally, the model includes a new doping dependent ferromagnetic exchange between the t2g core spins which can arise from “virtual double exchange” mechanism which will be discussed in great detail in Chapter 1 . Finally, we give a brief account on Dynamical Mean Field Theory (DMFT) and Numerical Renormalization Group (NRG) as an impurity solver for the single impurity problem arising under single site DMFT approximation. In Chapter 2 we study the effect of inter-site ℓ - b hybridization on the ‘ℓ - b’ model. The single impurity problem arising under DMFT approximation has close connection with the Vigman-Finkelshtein (VF)model. Then we briefly introduce the VF model and bring out its close connection with the impurity problem. We consider both the particle-hole symmetric as well as the U → ∞ particle-hole asymmetric cases. We derive various spectral functions at T = 0K and discuss the nature of fixed points under various circumstances. We explicitly show that for the particle-hole symmetric case the Hamiltonian flows from X-ray edge singularity fixed point to Free Electron fixed point under Renormalization Group transformation. This is evident from the spectral properties of the model. We write down the effective Hamiltonian at the free electron fixed point. For the particle-hole asymmetric case the model flows from X-ray edge singularity fixed point to Free Electron/Strong Coupling fixed point with additional potential scattering terms. We write down the effective Hamiltonian at this fixed point and derive various leading order deviations. We found all of them to be irrelevant in nature also most interestingly the quasi-particles describing the under lying Fermi liquid state are found to be asymptotically non-interacting. We also calculate the Fermi liquid parameter, z, by analyzing the energy level structure of a non-interacting Hamiltonian with effective renormalized parameter. Also, we consider the case of ‘self consistent bath hybridization’ without ℓ - b hybridization for Bethe lattice with infinite coordination. Low energy qualitative features are found to be same but some of the high energy features get qualitatively modified. In Chapter 3 we discuss the transport properties of doped manganites in the insulating phases and also the Hall effect in the metallic phase. In the first part of this chapter we calculate the resistivity based on the ‘ℓ - b’model and try to fit it to the semiconducting form: ρ(T )= ρ0(T /T0)−nexp[Δ(T )/kBT ] and extract the “transport gap”, Δ(T ). This gap can be characterized in terms of the “spectral gap” which can be defined for the ℓ - b model. It is found that the transport gap in the paramagnetic phase can be characterized in terms of the near constant “spectral gap” in this phase whereas the same in the ferromagnetic phase can be characterized in terms of the zero temperature spectral gap. In the last part of this chapter we calculate the Hall resistivity (ρxy) of these materials in the metallic phase. Ρxy is found to be negative and linear in applied field -quite consistent with the experimental findings but this fails to explain the positive linear Hall resistivity at low temperatures and its crossover as a function of field and temperature. We then present a reasonable explanation for this discrepancy and support it by calculating the Hall density of states for a two band “toy model” involving inter species hybridization. In Chapter 4 we calculate the optical conductivity, σ(ω), in ℓ - b model. σ(ω) arises from two independent processes. One of the processes involves ‘b’ electrons only and termed as ‘b - b channel’ and this gives rise to a Drude peak in the low frequency region. another process termed as the ‘ℓ - b channel’ involves hopping of an ℓ-electron to a neighbouring empty site and transforms into a ‘b’like state. This process gives rise to a broad mid-infrared peak. The total conductivity is the sum of contributions from these two incoherent channels. Calculated σ(ω) for metallic systems shows lot of similarities with experimental observations particularly the temperature evolution of the mid-infrared peak and the spectral weight transfer between the two peaks. But for the insulating systems the calculated optical conductivity showed trends similar to more recent experimental observations on some insulating systems (x =0.125) but contradicts with earlier experimental observations on some other insulating system (x =0.1). Finally, in the concluding chapter, we summarize results from all the chapters and also sketch some possible future directions of investigations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Pakhira, Nandan. „Spectral And Transport Properties Of Falicov-Kimball Related Models And Their Application To Manganites“. Thesis, 2009. http://hdl.handle.net/2005/660.

Der volle Inhalt der Quelle
Annotation:
From the time of the unexpected discovery of the insulating nature of NiO by Verwey half a century ago, Oxide materials have continued to occupy the centre stage of condensed matter physics. The recent discovery of high temperature superconductivity in doped cuprates has given a new impetus to the study of the strongly correlated electron systems. Besides, the occurrence of Colossal Magneto-Resistance (CMR) in doped rare earth manganite has also created renewed interest in these rather old systems. Understanding of the rich and complex phase diagram of these materials and their sensitivity to small perturbations e.g. external magnetic field of a few Tesla, temperature, change in isotope etc. are of great theoretical interest and also these materials have many potential technological applications. A common feature of all these oxide materials is that the transition metal ions have partially filled d-shells. Unlike s and p-electrons which gives rise to hybridized Bloch states, the d-electrons retain their atomic nature in a solid. This gives rise to strong Coulomb interaction among d-electrons which may be comparable or more than its kinetic energy. The strong correlation effects are evident from the experimental fact that the undoped parent compounds are insulators rather than metals as suggested by band theory, which favours a metallic state for systems with one electron per unit cell since this gives rise to partially filled bands (and hence a metallic state). These insulators termed Mott insulators, arise solely due to strong electron-electron correlations as compared to the band insulators which arise due to complete filling of one electron bands thereby giving rise to a gap (band gap)in the excitation spectra. The delicate competition between the kinetic energy and the Coulomb energy for d-electrons is broadly responsible for the wide variety of phenomena like Mott metal-insulator transition (MIT), magnetic transitions, charge ordering, orbital ordering, ferro/antiferroelectricity, and most interestingly the observation of high Tc superconductivity in doped cuprates. In this thesis we will restrict our interest to one such class of oxide materials, namely the doped rare earth manganites. In Chapter 1 we give a brief overview of the structure and basic interactions present in the doped manganites. Also, in the same Chapter we give a brief introduction to the phenomenology of manganites, particularly its phase diagram in the doping and temperature plane and various experimental features, e.g. the wide variety of phase transitions and phenomena particularly the observation of CMR, charge ordering and incipient meso-scale phase separations etc.. Then we briefly introduce a recently proposed microscopic model which is believed to be a minimal model which, for the first time, includes the three most important interactions present in the manganites namely the following -1)coupling of the orbitally degenerate eg electrons to local lattice distortions of Jahn-Teller type which gives rise to two species of electrons. The one denoted by by ℓ is associated with Jahn-Teller effects and hence is localized whereas the other denoted by b is an extended state and propagates through the lattice. 2) The strong Hund’s couplingof ℓ and b electrons to the t2g core spin and 3) the strong Coulomb correlation between the two species of electrons. Additionally, the model includes a new doping dependent ferromagnetic exchange between the t2g core spins which can arise from “virtual double exchange” mechanism which will be discussed in great detail in Chapter 1 . Finally, we give a brief account on Dynamical Mean Field Theory (DMFT) and Numerical Renormalization Group (NRG) as an impurity solver for the single impurity problem arising under single site DMFT approximation. In Chapter 2 we study the effect of inter-site ℓ - b hybridization on the ‘ℓ - b’ model. The single impurity problem arising under DMFT approximation has close connection with the Vigman-Finkelshtein (VF)model. Then we briefly introduce the VF model and bring out its close connection with the impurity problem. We consider both the particle-hole symmetric as well as the U → ∞ particle-hole asymmetric cases. We derive various spectral functions at T = 0K and discuss the nature of fixed points under various circumstances. We explicitly show that for the particle-hole symmetric case the Hamiltonian flows from X-ray edge singularity fixed point to Free Electron fixed point under Renormalization Group transformation. This is evident from the spectral properties of the model. We write down the effective Hamiltonian at the free electron fixed point. For the particle-hole asymmetric case the model flows from X-ray edge singularity fixed point to Free Electron/Strong Coupling fixed point with additional potential scattering terms. We write down the effective Hamiltonian at this fixed point and derive various leading order deviations. We found all of them to be irrelevant in nature also most interestingly the quasi-particles describing the under lying Fermi liquid state are found to be asymptotically non-interacting. We also calculate the Fermi liquid parameter, z, by analyzing the energy level structure of a non-interacting Hamiltonian with effective renormalized parameter. Also, we consider the case of ‘self consistent bath hybridization’ without ℓ - b hybridization for Bethe lattice with infinite coordination. Low energy qualitative features are found to be same but some of the high energy features get qualitatively modified. In Chapter 3 we discuss the transport properties of doped manganites in the insulating phases and also the Hall effect in the metallic phase. In the first part of this chapter we calculate the resistivity based on the ‘ℓ - b’model and try to fit it to the semiconducting form: ρ(T )= ρ0(T /T0)−nexp[Δ(T )/kBT ] and extract the “transport gap”, Δ(T ). This gap can be characterized in terms of the “spectral gap” which can be defined for the ℓ - b model. It is found that the transport gap in the paramagnetic phase can be characterized in terms of the near constant “spectral gap” in this phase whereas the same in the ferromagnetic phase can be characterized in terms of the zero temperature spectral gap. In the last part of this chapter we calculate the Hall resistivity (ρxy) of these materials in the metallic phase. Ρxy is found to be negative and linear in applied field -quite consistent with the experimental findings but this fails to explain the positive linear Hall resistivity at low temperatures and its crossover as a function of field and temperature. We then present a reasonable explanation for this discrepancy and support it by calculating the Hall density of states for a two band “toy model” involving inter species hybridization. In Chapter 4 we calculate the optical conductivity, σ(ω), in ℓ - b model. σ(ω) arises from two independent processes. One of the processes involves ‘b’ electrons only and termed as ‘b - b channel’ and this gives rise to a Drude peak in the low frequency region. another process termed as the ‘ℓ - b channel’ involves hopping of an ℓ-electron to a neighbouring empty site and transforms into a ‘b’like state. This process gives rise to a broad mid-infrared peak. The total conductivity is the sum of contributions from these two incoherent channels. Calculated σ(ω) for metallic systems shows lot of similarities with experimental observations particularly the temperature evolution of the mid-infrared peak and the spectral weight transfer between the two peaks. But for the insulating systems the calculated optical conductivity showed trends similar to more recent experimental observations on some insulating systems (x =0.125) but contradicts with earlier experimental observations on some other insulating system (x =0.1). Finally, in the concluding chapter, we summarize results from all the chapters and also sketch some possible future directions of investigations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Passeggeri, Ricardo. „Evolution of reputation in networks: A mean field game approach“. Master's thesis, 2014. http://hdl.handle.net/10362/15065.

Der volle Inhalt der Quelle
Annotation:
This work models the competitive behaviour of individuals who maximize their own utility managing their network of connections with other individuals. Utility is taken as a synonym of reputation in this model. Each agent has to decide between two variables: the quality of connections and the number of connections. Hence, the reputation of an individual is a function of the number and the quality of connections within the network. On the other hand, individuals incur in a cost when they improve their network of contacts. The initial value of the quality and number of connections of each individual is distributed according to an initial (given) distribution. The competition occurs over continuous time and among a continuum of agents. A mean field game approach is adopted to solve the model, leading to an optimal trajectory for the number and quality of connections for each individual.
NSBE - UNL
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Abdullaev, Jasur. „Nonlinear localization, controlled transport and collapse suppression in Bose-Einstein condensates“. Phd thesis, 2014. http://hdl.handle.net/1885/150449.

Der volle Inhalt der Quelle
Annotation:
This thesis includes theoretical studies regarding stability and manipulation of Bose-Einstein condensates (BECs) of ultra-cold atoms in 2D trapping geometry, as well as formation of steady states of exciton-polariton Bose-Einstein condensates created in solid states. We analyze and numerically model the dynamics and localization of the condensates using mean-field model. Chapter 1 contains an introduction to the physics of ultra-cold atom BEC and excitonpolariton BEC which provides a framework for the work presented in later chapters. In Chapter 2, we consider a method for achieving dynamically controllable transport of highly mobile matter-wave solitons in an ultra-cold atom BEC with attractive interparticle interaction loaded into a driven two-dimensional optical lattice. Our numerical analysis based on the mean-field model and the theory based on the effective particle approach demonstrate that fast, time-periodic rocking of the two-dimensional optical lattice enables efficient stabilization and manipulation of spatially localized matter wave packets via induced reconfigurable mobility channels. Chapter 3 consists of an investigation of the instability - collapse of a BEC with attractive interactions. In this chapter we explore the influence of an orbital angular momentum on the collapse of vortex-free elliptic clouds of Bose-Einstein condensates trapped in a radially symmetric harmonic potential or a rotating elliptic potential. The results of our analysis show that the number of trapped ultracold atoms corresponding to the collapse threshold can be radically increased for such rotating nonlinear matter waves in a radially harmonic trap. The results corresponding to a BEC cloud confined in a rotating elliptic trap show that the elongated stationary states can be parallel or perpendicular to the long axis of the trap and display bistable nature. In Chapter 4, we examine spatial localization and dynamical stability of Bose-Einstein condensates of exciton-polaritons in microcavities under the condition of off-resonant spatially inhomogeneous optical pumping both with and without a harmonic trapping potential. We employ the open-dissipative Gross-Pitaevskii model for describing an incoherently pumped polariton condensate coupled to an exciton reservoir. We reveal that spatial localization of the steady-state condensate occurs due to effective self-trapping created by the polariton flows, regardless of the presence of the external potential. A ground state of the polariton condensate with repulsive interactions between the quasiparticles represents a dynamically stable bright dissipative soliton. We also investigate the conditions for sustaining spatially localized structures, with nonzero angular momentum, in the form of single-charge vortices. Chapter 5 consider the existence of novel spatially localized states of exciton-polariton Bose-Einstein condensates in semiconductor microcavities with fabricated periodic inplane potentials. Our theory shows that, under the conditions of continuous nonresonant pumping, localization is observed for a wide range of optical pump parameters due to effective potentials self-induced by the polariton flows in the spatially periodic system. We show that the self-localization of exciton-polaritons in the lattice may occur both in the gaps and bands of the single-particle linear spectrum, and is dominated by the effects of gain and dissipation rather than the structured potential, in sharp contrast to the conservative condensates of ultra-cold alkali atoms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Simard, Corinne. „Détermination des coefficients de transport turbulent et analyse des cycles magnétiques produits dans un modèle dynamo en champ moyen avec et sans rétroaction magnétique“. Thèse, 2016. http://hdl.handle.net/1866/19303.

Der volle Inhalt der Quelle
Annotation:
Avec les récents développements obtenus grâce aux modèles globaux magnétohydrodynamiques en trois dimensions de la convection solaire, il est désormais possible de simuler des champs magnétiques structurés à grande échelle et présentant des inversions de polarité bien synchronisées dans chaque hémisphère. Ces modèles qui n'incluent, pour la plupart, aucune modélisation de la surface du Soleil génèrent donc leur dynamo avec l'action de la force électromotrice turbulente (FEM) et de la rotation différentielle uniquement. À partir de cette FEM, différentes techniques peuvent être utilisées pour extraire les coefficients de transport turbulent. Notamment, différents auteurs ont obtenu un tenseur alpha (coefficient du premier ordre) dont les 9 composantes présentent des amplitudes du même ordre, remettant en doute l'approximation faite dans le cas des modèles dynamo de type alphaOmega qui ne tient en compte qu’une de composante du tenseur. À partir d'un code d'analyse par décomposition en valeurs singulières pour évaluer les coefficients du tenseur alpha, nous avons généralisé la procédure pour extraire 18 des composantes du tenseur de deuxième ordre (tenseur beta). Les tenseurs alpha et beta obtenus par cette nouvelle procédure tel qu'appliquée aux sorties du modèle global EULAG-MHD, sont similaires aux tenseurs alpha et beta équivalant obtenus en utilisant l'approximation « Second Order Correlation Approximation ». À l'aide des coefficients de transport turbulent du premier ordre introduit dans un modèle dynamo en champ moyen, nous avons ensuite étudié certaines solutions magnétiques présentant des doubles dynamos. Cette analyse avait pour but de comparer les résultats obtenus par ce modèle simplifié caractérisé par la FEM provenant de EULAG-MHD aux résultats de EULAG-MHD directement. Cette preuve de concept nous a permis de démontrer que l'oscillation observée dans le champ magnétique en surface de EULAG-MHD pouvait provenir de l'action inductive d'une seconde dynamo. Une oscillation biennale est également observée dans plusieurs indices d'activité solaire dont l'origine n'est toujours pas établie. Il est évident que les deux modèles décrits ci-haut et le Soleil opèrent dans des régimes physiques différents. Toutefois, malgré leurs différences, le fait qu'il soit relativement facile de produire une seconde dynamo dans EULAG-MHD et dans le modèle en champ moyen indique que l'action inductive de la FEM peut facilement générer deux dynamos. Finalement, dans le but d'étudier les périodes de grands minima, phénomène encore non reproduit par les modèles globaux, nous avons ajouté une rétroaction magnétique sur l'écoulement azimutal au modèle dynamo cinématique en champ moyen décrit ci-haut. En analysant les solutions de ce modèle dynamo de type alpha2Omega non cinématique, nous avons pu reproduire la tendance observée jusqu'ici uniquement dans les modèles de type alphaOmega selon laquelle le nombre de nombre de Prandtl magnétique contrôle le rapport des périodes générées. De plus, en analysant une solution sur 50 000 ans présentant des périodes de grands minima et maxima non périodiques, nous avons obtenu une distribution de temps de séparation des grands minima presque exponentielle, caractéristique observée dans les reconstructions de l'activité solaire. La rotation différentielle associée à ces périodes de grands minima présente un niveau de fluctuation de 1% par rapport au profil moyen. Ce niveau de fluctuation est d'ailleurs comparable avec les reconstructions historiques de la rotation différentielle en surface obtenues lors du grand minimum de Maunder.
The recent developments achieved by tri-dimensionals magnetohydrodynamic (3D-MHD) global simulations of solar convection allow us to generate an organized large-scale magnetic fields with well-synchronized hemispheric polarity reversal. Because the vast majority of these simulations do not include a modelization of the Sun's surface layer, the generation of their dynamo is thus solely due to the action of the turbulent electromotive force (EMF) in conjunction with differential rotation. From this EMF, different methods can be used to extract the turbulent transport coefficients. In particular, various authors found a full 9 component alpha-tensor (first order coefficients) where all the components are of the same order of magnitude. This finding calls into question the alphaOmega approximation made by the vast majority of mean field dynamo models. We generalized a first order (alpha-tensor) singular value decomposition (SVD) analysis procedure to extract the 18 additional components of the second order tensor (beta-tensor). The alpha and beta tensors obtained by this new procedure as applied to the EULAG-MHD outputs, are similar to the equivalent alpha and beta tensors obtained using the second order correlation approximation (SOCA). By introducing the first order turbulent transport coefficients in a mean field dynamo model, we study the magnetic solutions where double dynamo modes were observed. This analysis allows us to compare the mean field dynamo solutions produced with the EMF, as extracted from EULAG-MHD, with the real magnetic output of EULAG-MHD. This proof of concept demonstrated that the quasi-biennal oscillation observed in the surface toroidal magnetic field in EULAG-MHD can be produced by the inductive action of a secondary dynamo. A similar quasi-biennal oscillation signal is also observed in multiple proxies of the solar activity whose origin is still not confirmed. Although the physical set of properties under which the two numerical models described above operate are different from the Sun, the fact that both models can reproduce a secondary dynamo shows us that the inductive action of the EMF can easily produce two dynamos. Finally, in order to study epochs of grand minima that still cannot be reproduced in global 3D-MHD simulations of convection, we added a magnetic feedback on the mean azimutal flow in our kinematic mean field model. This non-kinematic alpha2Omega model was able to reproduce the tendency of the Prandtl number (Pm) to control the ratio of the modulation period. More specifically, we found an inverse relation between Pm and the ratio of the main magnetic cycle period to the grand minima occurrence period. Moreover, by analyzing a simulation of a length of 50,000 years, where aperiodic periods of grand minima and maxima are observed, we found a waiting time distribution (WTD) of the grand minima close to an exponential, a characteristic also observed in the reconstruction of the solar activity. Finally, the level of fluctuation in the surface differential rotation associated with epochs of grand minima is ~1%. This level of fluctuation was also observed in historical reconstructions of the surface differential rotation during the Maunder minimum.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Schneider, Sebastian Olivier. „Advances and Applications of Experimental Measures to Test Behavioral Saving Theories and a Method to Increase Efficiency in Binary and Multiple Treatment Assignment“. Thesis, 2017. http://hdl.handle.net/11858/00-1735-0000-002E-E306-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie