Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Mean field optimal transport“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Mean field optimal transport" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Mean field optimal transport"
Baudelet, Sebastian, Brieuc Frénais, Mathieu Laurière, Amal Machtalay und Yuchen Zhu. „Deep learning for mean field optimal transport“. ESAIM: Proceedings and Surveys 77 (2024): 145–75. http://dx.doi.org/10.1051/proc/202477145.
Der volle Inhalt der QuelleCao, Haoyang, Xin Guo und Mathieu Laurière. „Connecting GANs, Mean-Field Games, and Optimal Transport“. SIAM Journal on Applied Mathematics 84, Nr. 4 (01.07.2024): 1255–87. http://dx.doi.org/10.1137/22m1499534.
Der volle Inhalt der QuelleLiu, Jiakun, und Grégoire Loeper. „Optimal transport with discrete long-range mean-field interactions“. Bulletin of Mathematical Sciences 10, Nr. 02 (12.05.2020): 2050011. http://dx.doi.org/10.1142/s1664360720500113.
Der volle Inhalt der QuelleDi Persio, Luca, und Matteo Garbelli. „From Optimal Control to Mean Field Optimal Transport via Stochastic Neural Networks“. Symmetry 15, Nr. 9 (08.09.2023): 1724. http://dx.doi.org/10.3390/sym15091724.
Der volle Inhalt der QuelleRuthotto, Lars, Stanley J. Osher, Wuchen Li, Levon Nurbekyan und Samy Wu Fung. „A machine learning framework for solving high-dimensional mean field game and mean field control problems“. Proceedings of the National Academy of Sciences 117, Nr. 17 (09.04.2020): 9183–93. http://dx.doi.org/10.1073/pnas.1922204117.
Der volle Inhalt der QuelleSivilevičius, Henrikas, und Mindaugas Martišius. „FIELD INVESTIGATION AND ASSESSMENT ON THE WEAR OF ASPHALT PAVEMENT MILLING MACHINE PICKS“. Transport 36, Nr. 6 (09.02.2022): 499–509. http://dx.doi.org/10.3846/transport.2021.16443.
Der volle Inhalt der QuelleBARTON, ALISTAIR, und NASSIF GHOUSSOUB. „Dynamic and stochastic propagation of the Brenier optimal mass transport“. European Journal of Applied Mathematics 30, Nr. 6 (20.03.2019): 1264–99. http://dx.doi.org/10.1017/s0956792519000032.
Der volle Inhalt der QuelleIgbida, Noureddine, und Van Thanh Nguyen. „Optimal partial transport problem with Lagrangian costs“. ESAIM: Mathematical Modelling and Numerical Analysis 52, Nr. 5 (September 2018): 2109–32. http://dx.doi.org/10.1051/m2an/2018001.
Der volle Inhalt der QuelleMiatselskaya, N. S., A. I. Bril, A. P. Chaikovsky, Yu Yu Yukhymchuk, G. P. Milinevski und A. A. Simon. „OPTIMAL INTERPOLATION OF AERONET RADIOMETRIC NETWORK OBSERVATIONS FOR THE EVALUATION OF THE AEROSOL OPTICAL DEPTH DISTRIBUTION IN THE EASTERN EUROPEAN REGION“. Journal of Applied Spectroscopy 89, Nr. 2 (18.03.2022): 246–53. http://dx.doi.org/10.47612/0514-7506-2022-89-2-246-253.
Der volle Inhalt der QuelleHassanzadeh, Pedram, Gregory P. Chini und Charles R. Doering. „Wall to wall optimal transport“. Journal of Fluid Mechanics 751 (24.06.2014): 627–62. http://dx.doi.org/10.1017/jfm.2014.306.
Der volle Inhalt der QuelleDissertationen zum Thema "Mean field optimal transport"
Mészáros, Alpár Richárd. „Density constraints in optimal transport, PDEs and mean field games“. Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112155/document.
Der volle Inhalt der QuelleMotivated by some questions raised by F. Santambrogio, this thesis is devoted to the study of Mean Field Games and models involving optimal transport with density constraints. To study second order MFG models in the spirit of the work of F. Santambrogio, as a possible first step we introduce and show the well-posedness of a diffusive crowd motion model with density constraints (generalizing in some sense the works by B. Maury et al.). The model is described by the evolution of the people's density, that can be seen as a curve in the Wasserstein space. From the PDE point of view, this corresponds to a modified Fokker-Planck equation, with an additional gradient of a pressure (only living in the saturated zone) in the drift. We provide a uniqueness result for the pair density and pressure by passing through the dual equation and using some well-known parabolic estimates. Initially motivated by the splitting algorithm (used for the above existence result), we study some fine properties of the Wasserstein projection below a given threshold. Embedding this question into a larger class of variational problems involving optimal transport, we show BV estimates for the optimizers. Other possible applications (for partial optimal transport, shape optimization and degenerate parabolic problems) of these BV estimates are also discussed.Changing the point of view, we also study variational Mean Field Game models with density constraints. In this sense, the MFG systems are obtained as first order optimality conditions of two convex problems in duality. In these systems an additional term appears, interpreted as a price to be paid when agents pass through saturated zones. Firstly, profiting from the regularity results of elliptic PDEs, we give the existence and characterization of the solutions of stationary second order MFGs with density constraints. As a byproduct we characterize the subdifferential of a convex functional introduced initially by Benamou-Brenier to give a dynamic formulation of the optimal transport problem. Secondly, (based on a penalization technique) we prove the well-posedness of a class of first order evolutive MFG systems with density constraints. An unexpected connection with the incompressible Euler's equations à la Brenier is also given
Marzufero, Luciano. „Some optimal visiting problems: from a single player to a mean-field type model“. Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/350780.
Der volle Inhalt der QuelleFrénais, Brieuc. „Modèles stochastiques de branchement-sélection“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD033.
Der volle Inhalt der QuelleThe central object of this thesis is a system of particles moving on the real line and subject to branching and selection rules, called N-branching Markov process, which generalizes the N-branching Brownian motion studied by Maillard, by allowing more general trajectories for the particles. Our main results establish under certain regularity assumptions the existence of a hydrodynamic limit for this particle system, which is the c.d.f. of the distribution of the underlying process conditioned on not having crossed a certain boundary, characterized as the solution of an inverse first-passage time problem. The proof relies on a coupling with auxiliary processes, constructed by exploiting an assumption of stochastic monotonicity on the underlying process. In parallel, we consider the mean field optimal transport problem with a numerical point of view. We develop three deep learning methods to obtain approximate solutions, implemented on various test cases, illustrating the effectiveness of the proposed approaches
Bonnet, Benoît. „Optimal control in Wasserstein spaces“. Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0442.
Der volle Inhalt der QuelleA wealth of mathematical tools allowing to model and analyse multi-agent systems has been brought forth as a consequence of recent developments in optimal transport theory. In this thesis, we extend for the first time several of these concepts to the framework of control theory. We prove several results on this topic, including Pontryagin optimality necessary conditions in Wasserstein spaces, intrinsic regularity properties of optimal solutions, sufficient conditions for different kinds of pattern formation, and an auxiliary result pertaining to singularity arrangements in Sub-Riemannian geometry
Capuani, Rossana. „Mean Field Games with State Constraints“. Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED006.
Der volle Inhalt der QuelleThe aim of this Thesis is to study deterministic mean field games with state constraints. Mean field games (MFG) is a recent theory invented by Lasry and Lions which studies optimization problems with large populations of agents in a dynamical framework. The mathematical analysis of such problems has so far focused on situations where the agents can evolve in the whole space. In practice, however, the agents often have constraints on their state. The aim of this Thesis is to understand the consequence of such constraints on the analysis of mean field games. We first show that the Nash MFG equilibria can be described as fixed points on the space of measures on constrained trajectories (generalized MFG equilibria). In order to obtain more precise results on these equilibria, we show a smooth optimality principle for the optimal trajectories of control problem with state constraints. We derive from this that the generalized equilibria satisfy a MFG system in which the Hamilton-Jacobi equation and the continuity equation have to be understand in a specific sense
Monson, Peter A. „Dynamic mean field theory for fluids in mesoporous materials“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-184643.
Der volle Inhalt der QuelleMonson, Peter A. „Dynamic mean field theory for fluids in mesoporous materials“. Diffusion fundamentals 16 (2011) 13, S. 1-2, 2011. https://ul.qucosa.de/id/qucosa%3A13742.
Der volle Inhalt der QuelleHäggbom, Marcus, und Shayan Nafar. „Mean-Variance Portfolio Selection Accounting for Financial Bubbles: A Mean-Field Type Approach“. Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252299.
Der volle Inhalt der QuelleFinansiella bubblor är ett fenomen som har påverkat marknader sedan 1600-talet. Bubblor tenderar att skapas när marknaden kraftigt övervärderar en tillgång vilket orsakar en hyperbolisk tillväxt i marknadspriset. Detta följs av en plötslig kollaps. Därför är det viktigt för investerare att kunna minska sin exponering mot aktier som befinner sig i en bubbla, så att risken för stora plötsliga förluster reduceras. Således är portföljoptimering där aktiedynamiken tar hänsyn till bubblor av högt intresse för marknadsdeltagare. Portföljoptimering med avseende på medelfältet är ett relativt nytt tillvägagångssätt för att behandla bubbelfenomen. Av denna anledning undersöks i detta arbete en hittills oprövad lösningsmetod som möjliggör en medelfältslösning till avvägningen mellan förväntad avkastning och risk. Där-utöver presenteras även ett antal nya modeller för aktier som kan bortleda investerare från bubblor.
Basna, Rani. „Mean Field Games for Jump Non-Linear Markov Process“. Doctoral thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-55852.
Der volle Inhalt der QuelleChen, Rui. „Dynamic optimal control for distress large financial networks and Mean field systems with jumps Optimal connectivity for a large financial network Mean Field BSDEs and Global Dynamic Risk Measures“. Thesis, Paris Sciences et Lettres (ComUE), 2019. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2019PSLED042.
Der volle Inhalt der QuelleThis thesis presents models and methodologies to understand the control of systemic risk in large systems. We propose two approaches. The first one is structural : a financial system is represented as a network of institutions. They have strategic interactions as well as direct interactions through linkages in a contagion process. The novelty of our approach is that these two types of interactions are intertwined themselves and we propose new notions of equilibria for such games and analyze the systemic risk emerging in equilibrium. The second approach is a reduced form.We model the dynamics of regulatory capital using a mean field operator : required capital depends on the standalone risk but also on the evolution of the capital of all other banks in the system. In this model, required capital is a dynamic risk measure and is represented as a the solution of a mean-field BDSE with jumps. We show a novel dual representation theorem. In the context of meanfield BSDEs the representation gives yield to a stochastic discount factor and a worst-case probability measure that encompasses the overall interactions in the system. We also solve the optimal stopping problem of dynamic risk measure by connecting it to the solution of reflected meanfield BSDE with jumps. Finally, We provide a comprehensive model for the order book dynamics and optimal Market making strategy appeared in liquidity risk problems
Bücher zum Thema "Mean field optimal transport"
Sun, Jingrui, und Jiongmin Yong. Stochastic Linear-Quadratic Optimal Control Theory: Differential Games and Mean-Field Problems. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48306-7.
Der volle Inhalt der QuelleCardaliaguet, Pierre, François Delarue, Jean-Michel Lasry und Pierre-Louis Lions. The Master Equation and the Convergence Problem in Mean Field Games. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691190716.001.0001.
Der volle Inhalt der QuelleMean Field Games: AMS Short Course, Mean Field Games, Agent Based Models to Nash Equilibria, January 13--14, 2020, Denver, Colorado. American Mathematical Society, 2021.
Den vollen Inhalt der Quelle findenTransport in Multilayered Nanostructures: The Dynamical Mean-Field Theory Approach. World Scientific Publishing Co Pte Ltd, 2006.
Den vollen Inhalt der Quelle findenTransport in Multilayered Nanostructures: The Dynamical Mean-field Theory Approach. Imperial College Press, 2006.
Den vollen Inhalt der Quelle findenTransport in Multilayered Nanostructures: The Dynamical Mean-field Theory Approach. World Scientific Publishing Co Pte Ltd, 2006.
Den vollen Inhalt der Quelle findenYong, Jiongmin, und Jingrui Sun. Stochastic Linear-Quadratic Optimal Control Theory: Differential Games and Mean-Field Problems. Springer, 2020.
Den vollen Inhalt der Quelle findenBezsudnov, Igor V., Joseph Malinsky, Alexander Morozovskiy, Vladimir A. Sevryukov und Andrei A. Snarskii. Transport Processes in Macroscopically Disordered Media: From Mean Field Theory to Percolation. Springer London, Limited, 2016.
Den vollen Inhalt der Quelle findenSnarskii, Andrei A. Transport Processes in Macroscopically Disordered Media: From Mean Field Theory to Percolation. Springer, 2018.
Den vollen Inhalt der Quelle findenTiwari, Sandip. Phase transitions and their devices. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198759874.003.0004.
Der volle Inhalt der QuelleBuchteile zum Thema "Mean field optimal transport"
Liu, Jiakun, und Grégoire Loeper. „Optimal Transport with Discrete Mean Field Interaction“. In 2017 MATRIX Annals, 207–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04161-8_15.
Der volle Inhalt der QuelleSun, Jingrui, und Jiongmin Yong. „Mean-Field Linear-Quadratic Optimal Controls“. In Stochastic Linear-Quadratic Optimal Control Theory: Differential Games and Mean-Field Problems, 69–123. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48306-7_3.
Der volle Inhalt der QuelleMailoud Sekkouri, Samy, und Sandro Wimberger. „Mean-Field Transport of a Bose-Einstein Condensate“. In Emergent Complexity from Nonlinearity, in Physics, Engineering and the Life Sciences, 49–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47810-4_5.
Der volle Inhalt der QuelleLiu, Huageng, und Donghua Shi. „An Euler-Poincaré Approach to Mean-Field Optimal Control“. In Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021), 2066–72. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9492-9_204.
Der volle Inhalt der QuelleCarmona, René, und François Delarue. „Optimal Control of SDEs of McKean-Vlasov Type“. In Probabilistic Theory of Mean Field Games with Applications I, 513–617. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58920-6_6.
Der volle Inhalt der QuelleØksendal, Bernt, und Agnès Sulem. „Optimal Control of Predictive Mean-Field Equations and Applications to Finance“. In Stochastics of Environmental and Financial Economics, 301–20. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23425-0_12.
Der volle Inhalt der QuelleSun, Jingrui, und Jiongmin Yong. „Some Elements of Linear-Quadratic Optimal Controls“. In Stochastic Linear-Quadratic Optimal Control Theory: Differential Games and Mean-Field Problems, 1–13. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48306-7_1.
Der volle Inhalt der QuelleGomez, Arnold D., Maureen L. Stone, Philip V. Bayly und Jerry L. Prince. „Quantifying Tensor Field Similarity with Global Distributions and Optimal Transport“. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, 428–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00934-2_48.
Der volle Inhalt der QuelleSun, Jingrui, und Jiongmin Yong. „Linear-Quadratic Two-Person Differential Games“. In Stochastic Linear-Quadratic Optimal Control Theory: Differential Games and Mean-Field Problems, 15–67. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48306-7_2.
Der volle Inhalt der QuelleTakabe, Hideaki. „Non-local Transport of Electrons in Plasmas“. In Springer Series in Plasma Science and Technology, 285–323. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-45473-8_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Mean field optimal transport"
Ringh, Axel, Isabel Haasler, Yongxin Chen und Johan Karlsson. „Efficient computations of multi-species mean field games via graph-structured optimal transport“. In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021. http://dx.doi.org/10.1109/cdc45484.2021.9682861.
Der volle Inhalt der QuelleMukamel, Shaul, und Jasper Knoester. „Nonlinear Optical Susceptibilities; Beyond the Local Field Approximation“. In Nonlinear Optical Properties of Materials. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/nlopm.1988.mb3.
Der volle Inhalt der QuelleWatson, George H., Paul M. Saulnier, I. Inane Tarhan und Martin P. Zinkin. „Photon transport measurements in dense random media“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.tuff3.
Der volle Inhalt der QuelleBarz, Dominik P. J., und Peter Ehrhard. „Simulation of Flow and Mass Transport in a Meander Microchannel Subject to Electroosmotic Pumping“. In ASME 2003 1st International Conference on Microchannels and Minichannels. ASMEDC, 2003. http://dx.doi.org/10.1115/icmm2003-1043.
Der volle Inhalt der QuelleToulouse, Michael M., Guislain Doljac, Van P. Carey und Cullen Bash. „Exploration of a Potential-Flow-Based Compact Model of Air-Flow Transport in Data Centers“. In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10806.
Der volle Inhalt der Quellede Jager, B., und J. B. W. Kok. „Modeling of Turbulent Combustion of Lean Premixed Prevaporized Propane Using the CFI Combustion Model“. In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90565.
Der volle Inhalt der QuelleFornasier, Massimo, Benedetto Piccoli, Nastassia Pouradier Duteil und Francesco Rossi. „Mean-field optimal control by leaders“. In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC). IEEE, 2014. http://dx.doi.org/10.1109/cdc.2014.7040482.
Der volle Inhalt der QuelleAlias, Cyril, Mandar Jawale, Alexander Goudz und Bernd Noche. „Applying Novel Future-Internet-Based Supply Chain Control Towers to the Transport and Logistics Domain“. In ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20422.
Der volle Inhalt der QuelleHuanle Zhang, Yu Fu und Jian Liu. „Optimal transmission distance of mean progress and mean transport in device-to-device networks“. In International Conference on Cyberspace Technology (CCT 2013). Institution of Engineering and Technology, 2013. http://dx.doi.org/10.1049/cp.2013.2147.
Der volle Inhalt der QuelleMobinipouya, Neda, und Omid Mobinipouya. „On the Heat Transfer Enhancement of Turbulent Gas Floes in Short Round Tubes Engaging a Light Gas Mixed With Selected Heavier Gases“. In ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2011. http://dx.doi.org/10.1115/icnmm2011-58136.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Mean field optimal transport"
Russo, David, Daniel M. Tartakovsky und Shlomo P. Neuman. Development of Predictive Tools for Contaminant Transport through Variably-Saturated Heterogeneous Composite Porous Formations. United States Department of Agriculture, Dezember 2012. http://dx.doi.org/10.32747/2012.7592658.bard.
Der volle Inhalt der QuelleKong, Zhihao, und Na Lu. Field Implementation of Concrete Strength Sensor to Determine Optimal Traffic Opening Time. Purdue University, 2024. http://dx.doi.org/10.5703/1288284317724.
Der volle Inhalt der QuelleRusso, David, und William A. Jury. Characterization of Preferential Flow in Spatially Variable Unsaturated Field Soils. United States Department of Agriculture, Oktober 2001. http://dx.doi.org/10.32747/2001.7580681.bard.
Der volle Inhalt der QuelleSnyder, Victor A., Dani Or, Amos Hadas und S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, April 2002. http://dx.doi.org/10.32747/2002.7580670.bard.
Der volle Inhalt der QuelleWei, Fulu, Ce Wang, Xiangxi Tian, Shuo Li und Jie Shan. Investigation of Durability and Performance of High Friction Surface Treatment. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317281.
Der volle Inhalt der QuelleHaslam, Divna, Ben Mathews, Rosana Pacella, James Graham Scott, David Finkelhor, Daryl Higgins, Franziska Meinck et al. The prevalence and impact of child maltreatment in Australia: Findings from the Australian Child Maltreatment Study: Brief Report. Queensland University of Technology, 2023. http://dx.doi.org/10.5204/rep.eprints.239397.
Der volle Inhalt der Quelle