Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Maxwell's equations in time domain.

Zeitschriftenartikel zum Thema „Maxwell's equations in time domain“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Maxwell's equations in time domain" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Huang, Zhi-Xiang, Wei Sha, Xian-Liang Wu und Ming-Sheng Chen. „Decomposition methods for time-domain Maxwell's equations“. International Journal for Numerical Methods in Fluids 56, Nr. 9 (2008): 1695–704. http://dx.doi.org/10.1002/fld.1569.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bao, Gang, Bin Hu, Peijun Li und Jue Wang. „Analysis of time-domain Maxwell's equations in biperiodic structures“. Discrete & Continuous Dynamical Systems - B 25, Nr. 1 (2020): 259–86. http://dx.doi.org/10.3934/dcdsb.2019181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Van, Tri, und Aihua Wood. „A Time-Domain Finite Element Method for Maxwell's Equations“. SIAM Journal on Numerical Analysis 42, Nr. 4 (Januar 2004): 1592–609. http://dx.doi.org/10.1137/s0036142901387427.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ala, G., E. Francomano, A. Tortorici, E. Toscano und F. Viola. „Corrective meshless particle formulations for time domain Maxwell's equations“. Journal of Computational and Applied Mathematics 210, Nr. 1-2 (Dezember 2007): 34–46. http://dx.doi.org/10.1016/j.cam.2006.10.054.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Liu, Yaxing, Joon-Ho Lee, Tian Xiao und Qing H. Liu. „A spectral-element time-domain solution of Maxwell's equations“. Microwave and Optical Technology Letters 48, Nr. 4 (2006): 673–80. http://dx.doi.org/10.1002/mop.21440.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Buchanan, W. J., und N. K. Gupta. „Maxwell's Equations in the 21st Century“. International Journal of Electrical Engineering & Education 30, Nr. 4 (Oktober 1993): 343–53. http://dx.doi.org/10.1177/002072099303000408.

Der volle Inhalt der Quelle
Annotation:
Maxwell's equations in the 21st Century The finite-difference time-domain method is a novel method for solving Maxwell's curl equations, especially when parallel-processing techniques are applied. The next generation of computers will bring a revolution by exploiting the use of parallel processing in computation to the maximum.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Nevels, R., und J. Jeong. „The Time Domain Green's Function and Propagator for Maxwell's Equations“. IEEE Transactions on Antennas and Propagation 52, Nr. 11 (November 2004): 3012–18. http://dx.doi.org/10.1109/tap.2004.835123.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cohen, Gary, Xavier Ferrieres und Sébastien Pernet. „Discontinuous Galerkin methods for Maxwell's equations in the time domain“. Comptes Rendus Physique 7, Nr. 5 (Juni 2006): 494–500. http://dx.doi.org/10.1016/j.crhy.2006.03.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Su, Zhuo, Yongqin Yang und Yunliang Long. „A Compact Unconditionally Stable Method for Time-Domain Maxwell's Equations“. International Journal of Antennas and Propagation 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/689327.

Der volle Inhalt der Quelle
Annotation:
Higher order unconditionally stable methods are effective ways for simulating field behaviors of electromagnetic problems since they are free of Courant-Friedrich-Levy conditions. The development of accurate schemes with less computational expenditure is desirable. A compact fourth-order split-step unconditionally-stable finite-difference time-domain method (C4OSS-FDTD) is proposed in this paper. This method is based on a four-step splitting form in time which is constructed by symmetric operator and uniform splitting. The introduction of spatial compact operator can further improve its performance. Analyses of stability and numerical dispersion are carried out. Compared with noncompact counterpart, the proposed method has reduced computational expenditure while keeping the same level of accuracy. Comparisons with other compact unconditionally-stable methods are provided. Numerical dispersion and anisotropy errors are shown to be lower than those of previous compact unconditionally-stable methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wang, J., und Y. Long. „Long time stable compact fourth-order scheme for time domain Maxwell's equations“. Electronics Letters 46, Nr. 14 (2010): 995. http://dx.doi.org/10.1049/el.2010.1204.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Deore, Narendra, und Avijit Chatterjee. „CELL-VERTEX BASED MULTIGRID SOLUTION OF THE TIME-DOMAIN MAXWELL'S EQUATIONS“. Progress In Electromagnetics Research B 23 (2010): 181–97. http://dx.doi.org/10.2528/pierb10062002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Sha, Wei, Zhixiang Huang, Mingsheng Chen und Xianliang Wu. „Survey on Symplectic Finite-Difference Time-Domain Schemes for Maxwell's Equations“. IEEE Transactions on Antennas and Propagation 56, Nr. 2 (2008): 493–500. http://dx.doi.org/10.1109/tap.2007.915444.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Nevels, Robert, und Jaehoon Jeong. „Time Domain Coupled Field Dyadic Green Function Solution for Maxwell's Equations“. IEEE Transactions on Antennas and Propagation 56, Nr. 8 (August 2008): 2761–64. http://dx.doi.org/10.1109/tap.2008.927574.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Wang, Jianying, Peng Liu und Yunliang Long. „A Compact Symplectic High-Order Scheme for Time-Domain Maxwell's Equations“. IEEE Antennas and Wireless Propagation Letters 9 (2010): 371–74. http://dx.doi.org/10.1109/lawp.2010.2049470.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Kim, Joonshik, und Fernando L. Teixeira. „Parallel and Explicit Finite-Element Time-Domain Method for Maxwell's Equations“. IEEE Transactions on Antennas and Propagation 59, Nr. 6 (Juni 2011): 2350–56. http://dx.doi.org/10.1109/tap.2011.2143682.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Omick, S., und S. Castillo. „Error characterization for the time-domain numerical solution of Maxwell's equations“. IEEE Antennas and Propagation Magazine 36, Nr. 5 (Oktober 1994): 58–62. http://dx.doi.org/10.1109/74.334927.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Bi, Z., K. Wu, C. Wu und J. Litva. „A new finite-difference time-domain algorithm for solving Maxwell's equations“. IEEE Microwave and Guided Wave Letters 1, Nr. 12 (Dezember 1991): 382–84. http://dx.doi.org/10.1109/75.103858.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Lee, J. F. „WETD - a finite element time-domain approach for solving Maxwell's equations“. IEEE Microwave and Guided Wave Letters 4, Nr. 1 (1994): 11–13. http://dx.doi.org/10.1109/75.267679.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Bao, Gang, Ying Li und Zhengfang Zhou. „Lp estimates of time-harmonic Maxwell's equations in a bounded domain“. Journal of Differential Equations 245, Nr. 12 (Dezember 2008): 3674–86. http://dx.doi.org/10.1016/j.jde.2008.03.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Angulo, Luis Diaz, Jesus Alvarez, Fernando L. Teixeira, M. Fernandez Pantoja und Salvador G. Garcia. „A Nodal Continuous-Discontinuous Galerkin Time-Domain Method for Maxwell's Equations“. IEEE Transactions on Microwave Theory and Techniques 63, Nr. 10 (Oktober 2015): 3081–93. http://dx.doi.org/10.1109/tmtt.2015.2472411.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Larson, R. W., T. Rudolph und P. H. Ng. „Special purpose computers for the time domain advance of Maxwell's equations“. IEEE Transactions on Magnetics 25, Nr. 4 (Juli 1989): 2913–15. http://dx.doi.org/10.1109/20.34322.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Dosopoulos, Stylianos, und Jin-Fa Lee. „Interior Penalty Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations“. IEEE Transactions on Magnetics 46, Nr. 8 (August 2010): 3512–15. http://dx.doi.org/10.1109/tmag.2010.2043235.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Huang, Z. X., X. L. Wu, W. Sha und M. S. Chen. „Optimal symplectic integrators for numerical solution of time-domain Maxwell's equations“. Microwave and Optical Technology Letters 49, Nr. 3 (26.01.2007): 545–47. http://dx.doi.org/10.1002/mop.22193.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Huang, Z. X., X. L. Wu, W. E. I. Sha und B. Wu. „Optimized Operator-Splitting Methods in Numerical Integration of Maxwell's Equations“. International Journal of Antennas and Propagation 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/956431.

Der volle Inhalt der Quelle
Annotation:
Optimized operator splitting methods for numerical integration of the time domain Maxwell's equations in computational electromagnetics (CEM) are proposed for the first time. The methods are based on splitting the time domain evolution operator of Maxwell's equations into suboperators, and corresponding time coefficients are obtained by reducing the norm of truncation terms to a minimum. The general high-order staggered finite difference is introduced for discretizing the three-dimensional curl operator in the spatial domain. The detail of the schemes and explicit iterated formulas are also included. Furthermore, new high-order Padé approximations are adopted to improve the efficiency of the proposed methods. Theoretical proof of the stability is also included. Numerical results are presented to demonstrate the effectiveness and efficiency of the schemes. It is found that the optimized schemes with coarse discretized grid and large Courant-Friedrichs-Lewy (CFL) number can obtain satisfactory numerical results, which in turn proves to be a promising method, with advantages of high accuracy, low computational resources and facility of large domain and long-time simulation. In addition, due to the generality, our optimized schemes can be extended to other science and engineering areas directly.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

BALL, JOHN M., YVES CAPDEBOSCQ und BASANG TSERING-XIAO. „ON UNIQUENESS FOR TIME HARMONIC ANISOTROPIC MAXWELL'S EQUATIONS WITH PIECEWISE REGULAR COEFFICIENTS“. Mathematical Models and Methods in Applied Sciences 22, Nr. 11 (10.09.2012): 1250036. http://dx.doi.org/10.1142/s0218202512500364.

Der volle Inhalt der Quelle
Annotation:
We are interested in the uniqueness of solutions to Maxwell's equations when the magnetic permeability μ and the permittivity ε are symmetric positive definite matrix-valued functions in ℝ3. We show that a unique continuation result for globally W1, ∞ coefficients in a smooth, bounded domain, allows one to prove that the solution is unique in the case of coefficients which are piecewise W1, ∞ with respect to a suitable countable collection of subdomains with C0 boundaries. Such suitable collections include any bounded finite collection. The proof relies on a general argument, not specific to Maxwell's equations. This result is then extended to the case when within these subdomains the permeability and permittivity are only L∞ in sets of small measure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Knoke, Tobias, Sebastian Kinnewig, Sven Beuchler, Ayhan Demircan, Uwe Morgner und Thomas Wick. „Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers“. Selecciones Matemáticas 10, Nr. 01 (31.05.2023): 1–15. http://dx.doi.org/10.17268/sel.mat.2023.01.01.

Der volle Inhalt der Quelle
Annotation:
In this work, we consider the time-harmonic Maxwell's equations and their numerical solution with a domain decomposition method. As an innovative feature, we propose a feedforward neural network-enhanced approximation of the interface conditions between the subdomains. The advantage is that the interface condition can be updated without recomputing the Maxwell system at each step. The main part consists of a detailed description of the construction of the neural network for domain decomposition and the training process. To substantiate this proof of concept, we investigate a few subdomains in some numerical experiments with low frequencies. Therein the new approach is compared to a classical domain decomposition method. Moreover, we highlight current challenges of training and testing with different wave numbers and we provide information on the behaviour of the neural-network, such as convergence of the loss function, and different activation functions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Helfert, S. F. „The Method of Lines in the time domain“. Advances in Radio Science 11 (04.07.2013): 15–21. http://dx.doi.org/10.5194/ars-11-15-2013.

Der volle Inhalt der Quelle
Annotation:
Abstract. The Method of Lines (MoL) is a semi-analytical numerical algorithm that has been used in the past to solve Maxwell's equations for waveguide problems. It is mainly used in the frequency domain. In this paper it is shown how the MoL can be used to solve initial value problems in the time domain. The required expressions are derived for one-dimensional structures, where the materials may be dispersive. The algorithm is verified with numerical results for homogeneous structures, and for the concatenation of standard dielectric and left handed materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

COSTABEL, MARTIN, MONIQUE DAUGE und CHRISTOPH SCHWAB. „EXPONENTIAL CONVERGENCE OF hp-FEM FOR MAXWELL EQUATIONS WITH WEIGHTED REGULARIZATION IN POLYGONAL DOMAINS“. Mathematical Models and Methods in Applied Sciences 15, Nr. 04 (April 2005): 575–622. http://dx.doi.org/10.1142/s0218202505000480.

Der volle Inhalt der Quelle
Annotation:
The time-harmonic Maxwell equations do not have an elliptic nature by themselves. Their regularization by a divergence term is a standard tool to obtain equivalent elliptic problems. Nodal finite element discretizations of Maxwell's equations obtained from such a regularization converge to wrong solutions in any non-convex polygon. Modification of the regularization term consisting in the introduction of a weight restores the convergence of nodal FEM, providing optimal convergence rates for the h version of finite elements. We prove exponential convergence of hp FEM for the weighted regularization of Maxwell's equations in plane polygonal domains provided the hp-FE spaces satisfy a series of axioms. We verify these axioms for several specific families of hp finite element spaces.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Zhang, Pan, Yanyan Hu, Yuchen Jin, Shaogui Deng, Xuqing Wu und Jiefu Chen. „A Maxwell's Equations Based Deep Learning Method for Time Domain Electromagnetic Simulations“. IEEE Journal on Multiscale and Multiphysics Computational Techniques 6 (2021): 35–40. http://dx.doi.org/10.1109/jmmct.2021.3057793.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Joon-Ho Lee, Jiefu Chen und Qing Huo Liu. „A 3-D Discontinuous Spectral Element Time-Domain Method for Maxwell's Equations“. IEEE Transactions on Antennas and Propagation 57, Nr. 9 (September 2009): 2666–74. http://dx.doi.org/10.1109/tap.2009.2027731.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Nickisch, L. J., und P. M. Franke. „Finite-difference time-domain solution of Maxwell's equations for the dispersive ionosphere“. IEEE Antennas and Propagation Magazine 34, Nr. 5 (Oktober 1992): 33–39. http://dx.doi.org/10.1109/74.163808.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

El Bouajaji, M., B. Thierry, X. Antoine und C. Geuzaine. „A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations“. Journal of Computational Physics 294 (August 2015): 38–57. http://dx.doi.org/10.1016/j.jcp.2015.03.041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Winges, Johan, und Thomas Rylander. „Higher-order brick-tetrahedron hybrid method for Maxwell's equations in time domain“. Journal of Computational Physics 321 (September 2016): 698–707. http://dx.doi.org/10.1016/j.jcp.2016.05.063.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Zhong, Shuangying, und Song Liu. „The Force-Gradient Symplectic Finite-Difference Time-Domain Scheme for Maxwell's Equations“. IEEE Transactions on Antennas and Propagation 63, Nr. 2 (Februar 2015): 834–38. http://dx.doi.org/10.1109/tap.2014.2381255.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Palaniswamy, Sampath, William F. Hall und Vijaya Shankar. „Numerical solution to Maxwell's equations in the time domain on nonuniform grids“. Radio Science 31, Nr. 4 (Juli 1996): 905–12. http://dx.doi.org/10.1029/96rs00783.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Lee, Robert L., und Niel K. Madsen. „A mixed finite element formulation for Maxwell's equations in the time domain“. Journal of Computational Physics 85, Nr. 2 (Dezember 1989): 503. http://dx.doi.org/10.1016/0021-9991(89)90168-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Lee, Robert L., und Niel K. Madsen. „A mixed finite element formulation for Maxwell's equations in the time domain“. Journal of Computational Physics 88, Nr. 2 (Juni 1990): 284–304. http://dx.doi.org/10.1016/0021-9991(90)90181-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Niegemann, Jens, Lasha Tkeshelashvili und Kurt Busch. „Higher-Order Time-Domain Simulations of Maxwell's Equations Using Krylov-Subspace Methods“. Journal of Computational and Theoretical Nanoscience 4, Nr. 3 (01.05.2007): 627–34. http://dx.doi.org/10.1166/jctn.2007.027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Lovetri, Joe, und George I. Costache. „Efficient implementation issues of finite difference time-domain codes for Maxwell's equations“. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 6, Nr. 3 (August 1993): 195–206. http://dx.doi.org/10.1002/jnm.1660060304.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Meagher, Timothy, Bin Jiang und Peng Jiang. „An enhanced finite difference time domain method for two dimensional Maxwell's equations“. Numerical Methods for Partial Differential Equations 36, Nr. 5 (23.01.2020): 1129–44. http://dx.doi.org/10.1002/num.22467.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Huang, Zhi-Xiang, Wei Sha, Xian-Liang Wu und Ming-Sheng Chen. „A novel high-order time-domain scheme for three-dimensional Maxwell's equations“. Microwave and Optical Technology Letters 48, Nr. 6 (2006): 1123–25. http://dx.doi.org/10.1002/mop.21563.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Bouquet, A., C. Dedeban und S. Piperno. „Discontinuous Galerkin time‐domain solution of Maxwell's equations on locally refined grids with fictitious domains“. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 29, Nr. 3 (11.05.2010): 578–601. http://dx.doi.org/10.1108/03321641011028206.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

DOUGLAS, JIM, JUAN E. SANTOS und DONGWOO SHEEN. „A NONCONFORMING MIXED FINITE ELEMENT METHOD FOR MAXWELL'S EQUATIONS“. Mathematical Models and Methods in Applied Sciences 10, Nr. 04 (Juni 2000): 593–613. http://dx.doi.org/10.1142/s021820250000032x.

Der volle Inhalt der Quelle
Annotation:
We present a nonconforming mixed finite element scheme for the approximate solution of the time-harmonic Maxwell's equations in a three-dimensional, bounded domain with absorbing boundary conditions on artificial boundaries. The numerical procedures are employed to solve the direct problem in magnetotellurics consisting in determining a scattered electromagnetic field in a model of the earth having bounded conductivity anomalies of arbitrary shapes. A domain-decomposition iterative algorithm which is naturally parallelizable and is based on a hybridization of the mixed method allows the solution of large three-dimensional models. Convergence of the approximation by the mixed method is proved, as well as the convergence of the iteration.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Park, Jong Hyuk, und John C. Strikwerda. „The Domain Decomposition Method for Maxwell's Equations in Time Domain Simulations with Dispersive Metallic Media“. SIAM Journal on Scientific Computing 32, Nr. 2 (Januar 2010): 684–702. http://dx.doi.org/10.1137/070705374.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Yee, K. S., und J. S. Chen. „The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell's equations“. IEEE Transactions on Antennas and Propagation 45, Nr. 3 (März 1997): 354–63. http://dx.doi.org/10.1109/8.558651.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Sheu, Tony W. H., S. Z. Wang, J. H. Li und Matthew R. Smith. „Simulation of Maxwell's Equations on GPU Using a High-Order Error-Minimized Scheme“. Communications in Computational Physics 21, Nr. 4 (08.03.2017): 1039–64. http://dx.doi.org/10.4208/cicp.oa-2016-0079.

Der volle Inhalt der Quelle
Annotation:
AbstractIn this study an explicit Finite Difference Method (FDM) based scheme is developed to solve the Maxwell's equations in time domain for a lossless medium. This manuscript focuses on two unique aspects – the three dimensional time-accurate discretization of the hyperbolic system of Maxwell equations in three-point non-staggered grid stencil and it's application to parallel computing through the use of Graphics Processing Units (GPU). The proposed temporal scheme is symplectic, thus permitting conservation of all Hamiltonians in the Maxwell equation. Moreover, to enable accurate predictions over large time frames, a phase velocity preserving scheme is developed for treatment of the spatial derivative terms. As a result, the chosen time increment and grid spacing can be optimally coupled. An additional theoretical investigation into this pairing is also shown. Finally, the application of the proposed scheme to parallel computing using one Nvidia K20 Tesla GPU card is demonstrated. For the benchmarks performed, the parallel speedup when compared to a single core of an Intel i7-4820K CPU is approximately 190x.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Yu, Mengjun, und Kun Li. „A data-driven reduced-order modeling approach for parameterized time-domain Maxwell's equations“. Networks and Heterogeneous Media 19, Nr. 3 (2024): 1309–35. http://dx.doi.org/10.3934/nhm.2024056.

Der volle Inhalt der Quelle
Annotation:
<p>This paper proposed a data-driven non-intrusive model order reduction (NIMOR) approach for parameterized time-domain Maxwell's equations. The NIMOR method consisted of fully decoupled offline and online stages. Initially, the high-fidelity (HF) solutions for some training time and parameter sets were obtained by using a discontinuous Galerkin time-domain (DGTD) method. Subsequently, a two-step or nested proper orthogonal decomposition (POD) technique was used to generate the reduced basis (RB) functions and the corresponding projection coefficients within the RB space. The high-order dynamic mode decomposition (HODMD) method leveraged these corresponding coefficients to predict the projection coefficients at all training parameters over a time region beyond the training domain. Instead of direct regression and interpolating new parameters, the predicted projection coefficients were reorganized into a three-dimensional tensor, which was then decomposed into time- and parameter-dependent components through the canonical polyadic decomposition (CPD) method. Gaussian process regression (GPR) was then used to approximate the relationship between the time/parameter values and the above components. Finally, the reduced-order solutions at new time/parameter values were quickly obtained through a linear combination of the POD modes and the approximated projection coefficients. Numerical experiments were presented to evaluate the performance of the method in the case of plane wave scattering.</p>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Jin, Jian-Ming, Mohammad Zunoubi, Kalyan C. Donepudi und Weng C. Chew. „Frequency-domain and time-domain finite-element solution of Maxwell's equations using spectral Lanczos decomposition method“. Computer Methods in Applied Mechanics and Engineering 169, Nr. 3-4 (Februar 1999): 279–96. http://dx.doi.org/10.1016/s0045-7825(98)00158-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Zunoubi, M., Jian-Ming Jin und Weng Cho Chew. „Spectral Lanczos decomposition method for time domain and frequency domain finite-element solution of Maxwell's equations“. Electronics Letters 34, Nr. 4 (1998): 346. http://dx.doi.org/10.1049/el:19980333.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Tiwari, Apurva, und Avijit Chatterjee. „Divergence Error Based p-adaptive Discontinuous Galerkin Solution of Time-domain Maxwell's Equations“. Progress In Electromagnetics Research B 96 (2022): 153–72. http://dx.doi.org/10.2528/pierb22080403.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie