Bücher zum Thema „Maxwell's equations in time domain“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Bücher für die Forschung zum Thema "Maxwell's equations in time domain" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Bücher für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Li, Jichun, und Yunqing Huang. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33789-5.
Der volle Inhalt der QuelleLi, Jichun. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Den vollen Inhalt der Quelle findenAndersson, Ulf. Time-domain methods for the Maxwell equations. Stockholm: Tekniska ho gsk., 2001.
Den vollen Inhalt der Quelle findenYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenC, Hagness Susan, Hrsg. Computational electrodynamics: The finite-difference time-domain method. 3. Aufl. Boston: Artech House, 2005.
Den vollen Inhalt der Quelle findenC, Hagness Susan, Hrsg. Computational electrodynamics: The finite-difference time-domain method. 2. Aufl. Boston: Artech House, 2000.
Den vollen Inhalt der Quelle findenGiansante, Peter Daniel. High-accuracy finite-difference methods for the time-domain Maxwell equations. [Toronto, Ont.]: University of Toronto, Graduate Dept. of Aerospace Science and Engineering, 1994.
Den vollen Inhalt der Quelle findenGiansante, Peter Daniel. High-accuracy finite-difference methods for the time-domain Maxwell equations. Ottawa: National Library of Canada, 1994.
Den vollen Inhalt der Quelle findenBérenger, Jean-Pierre. Perfectly matched layer (PML) for computational electromagnetics. [San Rafael, Calif.]: Morgan & Claypool Publishers, 2007.
Den vollen Inhalt der Quelle findenHesthaven, J. S. High-order/spectral methods on unstructured grids. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 2001.
Den vollen Inhalt der Quelle findenI, Warburton, und Institute for Computer Applications in Science and Engineering., Hrsg. High-order/spectral methods on unstructured grids. Hampton, VA: ICASE, National Aeronautics and Space Administration, Langley Research Center, 2001.
Den vollen Inhalt der Quelle findenI, Warburton, und Institute for Computer Applications in Science and Engineering., Hrsg. High-order/spectral methods on unstructured grids. Hampton, VA: ICASE, National Aeronautics and Space Administration, Langley Research Center, 2001.
Den vollen Inhalt der Quelle findenChrist, Andreas. Analysis and improvement of the numerical properties of the FDTD algorithm. Konstanz: Hartung-Gorre, 2005.
Den vollen Inhalt der Quelle finden1953-, Rao S. M., Hrsg. Time domain electromagnetics. San Diego: Academic Press, 1999.
Den vollen Inhalt der Quelle findenKirsch, Andreas, und Frank Hettlich. The Mathematical Theory of Time-Harmonic Maxwell's Equations. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11086-8.
Der volle Inhalt der QuelleA, Nicolaides Roy, und Institute for Computer Applications in Science and Engineering., Hrsg. Spurious fields in time domain computations of scattering problems. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1995.
Den vollen Inhalt der Quelle findenA, Nicolaides Roy, und Institute for Computer Applications in Science and Engineering., Hrsg. Spurious fields in time domain computations of scattering problems. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1995.
Den vollen Inhalt der Quelle findenKalnins, E. G. Symmetry operators for Maxwell's equations on curved space-time. Hamilton, N.Z: University of Waikato, 1992.
Den vollen Inhalt der Quelle findenSayas, Francisco-Javier. Retarded Potentials and Time Domain Boundary Integral Equations. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26645-9.
Der volle Inhalt der QuelleShvart͡sburg, A. B. Impulse Time-Domain Electromagnetics of Continuous Media. Boston, MA: Birkhäuser Boston, 1999.
Den vollen Inhalt der Quelle findenHe, Sailing. Time domain wave-splittings and inverse problems. Oxford: Oxford University Press, 1998.
Den vollen Inhalt der Quelle findenE, Zorumski William, und Langley Research Center, Hrsg. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Den vollen Inhalt der Quelle findenE, Zorumski William, und Langley Research Center, Hrsg. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Den vollen Inhalt der Quelle findenE, Zorumski William, und Langley Research Center, Hrsg. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Den vollen Inhalt der Quelle findenTidriri, M. D. Mathematical analysis of the Navier-Stokes equations with non standard boundary conditions. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1995.
Den vollen Inhalt der Quelle findenL, Whitfield David, und United States. National Aeronautics and Space Administration., Hrsg. Nonlinear (time domain) and linearized (title & freqency domain) solutions to the compressible Euler equations in conservation law form: Final report for NASA Lewis Research Center. Mississippi States, MS: Computational Fluid Dynamics Laboratory, Engineering Research Center for Computational Field Simulation, Mississippi State University, 1995.
Den vollen Inhalt der Quelle findenL, Whitfield David, und United States. National Aeronautics and Space Administration., Hrsg. Nonlinear (time domain) and linearized (title & freqency domain) solutions to the compressible Euler equations in conservation law form: Final report for NASA Lewis Research Center. Mississippi States, MS: Computational Fluid Dynamics Laboratory, Engineering Research Center for Computational Field Simulation, Mississippi State University, 1995.
Den vollen Inhalt der Quelle findenJung, B. H. Time and frequency domain solutions of EM problems: Using integral equations and a hybrid methodology. Hoboken, N.J: IEEE Press, 2010.
Den vollen Inhalt der Quelle findenBaumeister, Kenneth J. Finite difference time marching in the frequency domain: A parabolic formulation for aircraft acoustic nacelle design. [Washington, D.C: National Aeronautics and Space Administration, 1996.
Den vollen Inhalt der Quelle findenDzhamay, Anton, Christopher W. Curtis, Willy A. Hereman und B. Prinari. Nonlinear wave equations: Analytic and computational techniques : AMS Special Session, Nonlinear Waves and Integrable Systems : April 13-14, 2013, University of Colorado, Boulder, CO. Providence, Rhode Island: American Mathematical Society, 2015.
Den vollen Inhalt der Quelle findenLi, Jichun, und Yunqing Huang. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials. Springer, 2012.
Den vollen Inhalt der Quelle findenLi, Jichun, und Yunqing Huang. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials. Springer, 2015.
Den vollen Inhalt der Quelle findenOrhanović, Neven. Time domain simulation of Maxwell's equations by the method of characteristics. 1993.
Den vollen Inhalt der Quelle findenA Fourier collocation time domain method for numerically solving Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.
Den vollen Inhalt der Quelle findenComputational electrodynamics: The finite-difference time-domain method. Boston: Artech House, 1995.
Den vollen Inhalt der Quelle findenEdelvik, Frederik. Hybrid Solvers for the Maxwell Equations in Time-Domain. Uppsala Universitet, 2002.
Den vollen Inhalt der Quelle findenMittra, Raj, und Wenhua Yu. CFDTD: Conformal Finite Difference Time Domain Maxwell¿s Equations Solver, Software and User¿s Guide. Artech House Publishers, 2003.
Den vollen Inhalt der Quelle findenSarris, Costas D. Adaptive Mesh Refinement for Time-Domain Numerical Electromagnetics (Synthesis Lectures on Computational Electromagnetics). Morgan and Claypool Publishers, 2007.
Den vollen Inhalt der Quelle findenApplication of a Finite-Volume Time-Domain Maxwell Equation Solver to Three-Dimensional Objects. Storming Media, 1996.
Den vollen Inhalt der Quelle findenHettlich, Frank, und Andreas Kirsch. Mathematical Theory of Time-Harmonic Maxwell's Equations: Expansion-, Integral-, and Variational Methods. Springer London, Limited, 2014.
Den vollen Inhalt der Quelle findenChen, Zhizhang (David), und Shunchuan Yang. Introduction to Time-Domain Numerical Methods for Solving Electromagnetic Problems. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenChen, Zhizhang (David), und Shunchuan Yang. Introduction to Time-Domain Numerical Methods for Solving Electromagnetic Problems. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenHettlich, Frank, und Andreas Kirsch. The Mathematical Theory of Time-Harmonic Maxwell's Equations: Expansion-, Integral-, and Variational Methods. Springer, 2016.
Den vollen Inhalt der Quelle findenHettlich, Frank, und Andreas Kirsch. The Mathematical Theory of Time-Harmonic Maxwell's Equations: Expansion-, Integral-, and Variational Methods. Springer, 2014.
Den vollen Inhalt der Quelle findenSayas, Francisco-Javier. Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map. Springer London, Limited, 2016.
Den vollen Inhalt der Quelle findenSayas, Francisco-Javier. Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map. Springer, 2016.
Den vollen Inhalt der Quelle finden