Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Maxwell's equations in time domain“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Maxwell's equations in time domain" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Maxwell's equations in time domain"
Huang, Zhi-Xiang, Wei Sha, Xian-Liang Wu und Ming-Sheng Chen. „Decomposition methods for time-domain Maxwell's equations“. International Journal for Numerical Methods in Fluids 56, Nr. 9 (2008): 1695–704. http://dx.doi.org/10.1002/fld.1569.
Der volle Inhalt der QuelleBao, Gang, Bin Hu, Peijun Li und Jue Wang. „Analysis of time-domain Maxwell's equations in biperiodic structures“. Discrete & Continuous Dynamical Systems - B 25, Nr. 1 (2020): 259–86. http://dx.doi.org/10.3934/dcdsb.2019181.
Der volle Inhalt der QuelleVan, Tri, und Aihua Wood. „A Time-Domain Finite Element Method for Maxwell's Equations“. SIAM Journal on Numerical Analysis 42, Nr. 4 (Januar 2004): 1592–609. http://dx.doi.org/10.1137/s0036142901387427.
Der volle Inhalt der QuelleAla, G., E. Francomano, A. Tortorici, E. Toscano und F. Viola. „Corrective meshless particle formulations for time domain Maxwell's equations“. Journal of Computational and Applied Mathematics 210, Nr. 1-2 (Dezember 2007): 34–46. http://dx.doi.org/10.1016/j.cam.2006.10.054.
Der volle Inhalt der QuelleLiu, Yaxing, Joon-Ho Lee, Tian Xiao und Qing H. Liu. „A spectral-element time-domain solution of Maxwell's equations“. Microwave and Optical Technology Letters 48, Nr. 4 (2006): 673–80. http://dx.doi.org/10.1002/mop.21440.
Der volle Inhalt der QuelleBuchanan, W. J., und N. K. Gupta. „Maxwell's Equations in the 21st Century“. International Journal of Electrical Engineering & Education 30, Nr. 4 (Oktober 1993): 343–53. http://dx.doi.org/10.1177/002072099303000408.
Der volle Inhalt der QuelleNevels, R., und J. Jeong. „The Time Domain Green's Function and Propagator for Maxwell's Equations“. IEEE Transactions on Antennas and Propagation 52, Nr. 11 (November 2004): 3012–18. http://dx.doi.org/10.1109/tap.2004.835123.
Der volle Inhalt der QuelleCohen, Gary, Xavier Ferrieres und Sébastien Pernet. „Discontinuous Galerkin methods for Maxwell's equations in the time domain“. Comptes Rendus Physique 7, Nr. 5 (Juni 2006): 494–500. http://dx.doi.org/10.1016/j.crhy.2006.03.004.
Der volle Inhalt der QuelleSu, Zhuo, Yongqin Yang und Yunliang Long. „A Compact Unconditionally Stable Method for Time-Domain Maxwell's Equations“. International Journal of Antennas and Propagation 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/689327.
Der volle Inhalt der QuelleWang, J., und Y. Long. „Long time stable compact fourth-order scheme for time domain Maxwell's equations“. Electronics Letters 46, Nr. 14 (2010): 995. http://dx.doi.org/10.1049/el.2010.1204.
Der volle Inhalt der QuelleDissertationen zum Thema "Maxwell's equations in time domain"
Meagher, Timothy P. „A New Finite Difference Time Domain Method to Solve Maxwell's Equations“. PDXScholar, 2018. https://pdxscholar.library.pdx.edu/open_access_etds/4389.
Der volle Inhalt der QuelleBrookes, P. J. „Time domain methods for the solution of Maxwell's equations on unstructured grids“. Thesis, Swansea University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636158.
Der volle Inhalt der QuelleKim, Joonshik. „Finite Element Time Domain Techniques for Maxwell's Equations Based on Differential Forms“. The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1293588301.
Der volle Inhalt der QuelleEdelvik, Fredrik. „Hybrid Solvers for the Maxwell Equations in Time-Domain“. Doctoral thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-2156.
Der volle Inhalt der QuelleDosopoulos, Stylianos. „Interior Penalty Discontinuous Galerkin Finite Element Method for the Time-Domain Maxwell's Equations“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1337787922.
Der volle Inhalt der QuelleAndersson, Ulf. „Time-Domain Methods for the Maxwell Equations“. Doctoral thesis, Stockholm : Tekniska högsk, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3094.
Der volle Inhalt der QuelleNiegemann, Jens [Verfasser], und K. [Akademischer Betreuer] Busch. „Higher-Order Methods for Solving Maxwell's Equations in the Time-Domain / Jens Niegemann. Betreuer: K. Busch“. Karlsruhe : KIT-Bibliothek, 2009. http://d-nb.info/1014099129/34.
Der volle Inhalt der QuelleBoat, Matthew. „The time-domain numerical solution of Maxwell's electromagnetic equations, via the fourth order Runge-Kutta discontinuous Galerkin method“. Thesis, Swansea University, 2008. https://cronfa.swan.ac.uk/Record/cronfa42532.
Der volle Inhalt der QuelleEng, Ju-Ling. „Higher order finite-difference time-domain method“. Connect to resource, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1165607826.
Der volle Inhalt der QuelleKung, Christopher W. „Development of a time domain hybrid finite difference/finite element method for solutions to Maxwell's equations in anisotropic media“. Columbus, Ohio : Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1238024768.
Der volle Inhalt der QuelleBücher zum Thema "Maxwell's equations in time domain"
Li, Jichun, und Yunqing Huang. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33789-5.
Der volle Inhalt der QuelleLi, Jichun. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Den vollen Inhalt der Quelle findenAndersson, Ulf. Time-domain methods for the Maxwell equations. Stockholm: Tekniska ho gsk., 2001.
Den vollen Inhalt der Quelle findenYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenC, Hagness Susan, Hrsg. Computational electrodynamics: The finite-difference time-domain method. 3. Aufl. Boston: Artech House, 2005.
Den vollen Inhalt der Quelle findenC, Hagness Susan, Hrsg. Computational electrodynamics: The finite-difference time-domain method. 2. Aufl. Boston: Artech House, 2000.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Maxwell's equations in time domain"
Li, Jichun, und Yunqing Huang. „Time-Domain Finite Element Methods for Metamaterials“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 53–125. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_3.
Der volle Inhalt der QuelleLi, Jichun, und Yunqing Huang. „Introduction to Metamaterials“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 1–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_1.
Der volle Inhalt der QuelleLi, Jichun, und Yunqing Huang. „Introduction to Finite Element Methods“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 19–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_2.
Der volle Inhalt der QuelleLi, Jichun, und Yunqing Huang. „Discontinuous Galerkin Methods for Metamaterials“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 127–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_4.
Der volle Inhalt der QuelleLi, Jichun, und Yunqing Huang. „Superconvergence Analysis for Metamaterials“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 151–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_5.
Der volle Inhalt der QuelleLi, Jichun, und Yunqing Huang. „A Posteriori Error Estimation“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 173–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_6.
Der volle Inhalt der QuelleLi, Jichun, und Yunqing Huang. „A Matlab Edge Element Code for Metamaterials“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 195–214. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_7.
Der volle Inhalt der QuelleLi, Jichun, und Yunqing Huang. „Perfectly Matched Layers“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 215–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_8.
Der volle Inhalt der QuelleLi, Jichun, und Yunqing Huang. „Simulations of Wave Propagation in Metamaterials“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 241–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_9.
Der volle Inhalt der QuelleHuang, Yunqing, und Jichun Li. „Recent Advances in Time-Domain Maxwell’s Equations in Metamaterials“. In Lecture Notes in Computer Science, 48–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11842-5_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Maxwell's equations in time domain"
Pernet, S., X. Ferrieres und G. Cohen. „An Original Finite Element Method to Solve Maxwell's Equations in Time Domain“. In 15th International Zurich Symposium and Technical Exposition on Electromagnetic Compatibility, 279–84. IEEE, 2003. https://doi.org/10.23919/emc.2003.10806302.
Der volle Inhalt der QuelleSchiller, Oded, Ohad Segal, Yonatan Plotnik und Mordechai Segev. „Time-Domain Bound States in the Continuum“. In CLEO: Fundamental Science, FTh1L.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth1l.4.
Der volle Inhalt der QuelleBeniguel, Y. „Time-Domain Integral Equations for Transient Scattering“. In 8th International Zurich Symposium and Technical Exhibition on Electromagnetic Compatibility, 105–9. IEEE, 1989. https://doi.org/10.23919/emc.1989.10779145.
Der volle Inhalt der QuelleLiniger, Werner, und Albert Ruehli. „Time Domain Integration Methods for Electric Field Integral Equations“. In 11th International Zurich Symposium and Technical Exhibition on Electromagnetic Compatibility, 209–14. IEEE, 1995. https://doi.org/10.23919/emc.1995.10784314.
Der volle Inhalt der QuelleWang, Shu, und Zhen Peng. „Space-time parallel computation for time-domain Maxwell's equations“. In 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2017. http://dx.doi.org/10.1109/iceaa.2017.8065615.
Der volle Inhalt der QuelleYOUNG, JEFFREY, und FRANK BRUECKNER. „A time domain, weighted residual formulation of Maxwell's equations“. In 31st Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-462.
Der volle Inhalt der QuelleDosopoulos, Stylianos, und Jin-Fa Lee. „Discontinuous Galerkin Time Domain for Maxwell's equations on GPUs“. In 2010 URSI International Symposium on Electromagnetic Theory (EMTS 2010). IEEE, 2010. http://dx.doi.org/10.1109/ursi-emts.2010.5637389.
Der volle Inhalt der QuelleMakwana, N. N., und Avijit Chatterjee. „Fast solution of time domain Maxwell's equations using large time steps“. In 2015 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2015. http://dx.doi.org/10.1109/compem.2015.7052651.
Der volle Inhalt der QuelleWang, Jianying, Jianyan Guo, Ke Zhang, Kun Wang und Yunliang Long. „A novel high-order scheme for time domain Maxwell's equations“. In 2010 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2010. http://dx.doi.org/10.1109/icmmt.2010.5525080.
Der volle Inhalt der QuelleLuo, Yi. „2.5‐D time‐domain finite‐differencing of the quasistatic Maxwell's equations“. In SEG Technical Program Expanded Abstracts 1992. Society of Exploration Geophysicists, 1992. http://dx.doi.org/10.1190/1.1822121.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Maxwell's equations in time domain"
Shankar, Vijaya, W. Hally, C. Rowell und A. Tohammaian. Efficient Time Domain Solutions of Maxwell's Equations for Aerospace Systems. Fort Belvoir, VA: Defense Technical Information Center, April 1995. http://dx.doi.org/10.21236/ada294019.
Der volle Inhalt der QuelleMeagher, Timothy. A New Finite Difference Time Domain Method to Solve Maxwell's Equations. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.6273.
Der volle Inhalt der QuelleHagstrom, Thomas, und Stephen Lau. Radiation Boundary Conditions for Maxwell's Equations: A Review of Accurate Time-Domain Formulations. Fort Belvoir, VA: Defense Technical Information Center, Januar 2007. http://dx.doi.org/10.21236/ada470448.
Der volle Inhalt der QuelleGottlieb, David. High-Order Time-Domain Methods for Maxwells Equations. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada387163.
Der volle Inhalt der QuellePingenot, J., und V. Jandhyala. Final Report for Time Domain Boundary Element and Hybrid Finite Element Simulation for Maxwell's Equations. Office of Scientific and Technical Information (OSTI), März 2007. http://dx.doi.org/10.2172/902353.
Der volle Inhalt der QuelleElson, J. M. Three Dimensional Finite-Difference Time- Domain Solution of Maxwell's Equations With Perfectly Matched Absorbing Layers. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada369016.
Der volle Inhalt der QuelleShang, J. S. Characteristic Based Methods for the Time-Domain Maxwell Equations. Fort Belvoir, VA: Defense Technical Information Center, August 1993. http://dx.doi.org/10.21236/ada272973.
Der volle Inhalt der QuelleShields, Sidney. Novel methods for the time-dependent Maxwell's equations and their applications. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1352142.
Der volle Inhalt der QuelleRusso, David, und William A. Jury. Characterization of Preferential Flow in Spatially Variable Unsaturated Field Soils. United States Department of Agriculture, Oktober 2001. http://dx.doi.org/10.32747/2001.7580681.bard.
Der volle Inhalt der Quelle