Auswahl der wissenschaftlichen Literatur zum Thema „Maxwell's equations in time domain“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Maxwell's equations in time domain" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Maxwell's equations in time domain"

1

Huang, Zhi-Xiang, Wei Sha, Xian-Liang Wu und Ming-Sheng Chen. „Decomposition methods for time-domain Maxwell's equations“. International Journal for Numerical Methods in Fluids 56, Nr. 9 (2008): 1695–704. http://dx.doi.org/10.1002/fld.1569.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bao, Gang, Bin Hu, Peijun Li und Jue Wang. „Analysis of time-domain Maxwell's equations in biperiodic structures“. Discrete & Continuous Dynamical Systems - B 25, Nr. 1 (2020): 259–86. http://dx.doi.org/10.3934/dcdsb.2019181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Van, Tri, und Aihua Wood. „A Time-Domain Finite Element Method for Maxwell's Equations“. SIAM Journal on Numerical Analysis 42, Nr. 4 (Januar 2004): 1592–609. http://dx.doi.org/10.1137/s0036142901387427.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ala, G., E. Francomano, A. Tortorici, E. Toscano und F. Viola. „Corrective meshless particle formulations for time domain Maxwell's equations“. Journal of Computational and Applied Mathematics 210, Nr. 1-2 (Dezember 2007): 34–46. http://dx.doi.org/10.1016/j.cam.2006.10.054.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Liu, Yaxing, Joon-Ho Lee, Tian Xiao und Qing H. Liu. „A spectral-element time-domain solution of Maxwell's equations“. Microwave and Optical Technology Letters 48, Nr. 4 (2006): 673–80. http://dx.doi.org/10.1002/mop.21440.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Buchanan, W. J., und N. K. Gupta. „Maxwell's Equations in the 21st Century“. International Journal of Electrical Engineering & Education 30, Nr. 4 (Oktober 1993): 343–53. http://dx.doi.org/10.1177/002072099303000408.

Der volle Inhalt der Quelle
Annotation:
Maxwell's equations in the 21st Century The finite-difference time-domain method is a novel method for solving Maxwell's curl equations, especially when parallel-processing techniques are applied. The next generation of computers will bring a revolution by exploiting the use of parallel processing in computation to the maximum.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Nevels, R., und J. Jeong. „The Time Domain Green's Function and Propagator for Maxwell's Equations“. IEEE Transactions on Antennas and Propagation 52, Nr. 11 (November 2004): 3012–18. http://dx.doi.org/10.1109/tap.2004.835123.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cohen, Gary, Xavier Ferrieres und Sébastien Pernet. „Discontinuous Galerkin methods for Maxwell's equations in the time domain“. Comptes Rendus Physique 7, Nr. 5 (Juni 2006): 494–500. http://dx.doi.org/10.1016/j.crhy.2006.03.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Su, Zhuo, Yongqin Yang und Yunliang Long. „A Compact Unconditionally Stable Method for Time-Domain Maxwell's Equations“. International Journal of Antennas and Propagation 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/689327.

Der volle Inhalt der Quelle
Annotation:
Higher order unconditionally stable methods are effective ways for simulating field behaviors of electromagnetic problems since they are free of Courant-Friedrich-Levy conditions. The development of accurate schemes with less computational expenditure is desirable. A compact fourth-order split-step unconditionally-stable finite-difference time-domain method (C4OSS-FDTD) is proposed in this paper. This method is based on a four-step splitting form in time which is constructed by symmetric operator and uniform splitting. The introduction of spatial compact operator can further improve its performance. Analyses of stability and numerical dispersion are carried out. Compared with noncompact counterpart, the proposed method has reduced computational expenditure while keeping the same level of accuracy. Comparisons with other compact unconditionally-stable methods are provided. Numerical dispersion and anisotropy errors are shown to be lower than those of previous compact unconditionally-stable methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wang, J., und Y. Long. „Long time stable compact fourth-order scheme for time domain Maxwell's equations“. Electronics Letters 46, Nr. 14 (2010): 995. http://dx.doi.org/10.1049/el.2010.1204.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Maxwell's equations in time domain"

1

Meagher, Timothy P. „A New Finite Difference Time Domain Method to Solve Maxwell's Equations“. PDXScholar, 2018. https://pdxscholar.library.pdx.edu/open_access_etds/4389.

Der volle Inhalt der Quelle
Annotation:
We have constructed a new finite-difference time-domain (FDTD) method in this project. Our new algorithm focuses on the most important and more challenging transverse electric (TE) case. In this case, the electric field is discontinuous across the interface between different dielectric media. We use an electric permittivity that stays as a constant in each medium, and magnetic permittivity that is constant in the whole domain. To handle the interface between different media, we introduce new effective permittivities that incorporates electromagnetic fields boundary conditions. That is, across the interface between two different media, the tangential component, Er(x,y), of the electric field and the normal component, Dn(x,y), of the electric displacement are continuous. Meanwhile, the magnetic field, H(x,y), stays as continuous in the whole domain. Our new algorithm is built based upon the integral version of the Maxwell's equations as well as the above continuity conditions. The theoretical analysis shows that the new algorithm can reach second-order convergence O(∆x2)with mesh size ∆x. The subsequent numerical results demonstrate this algorithm is very stable and its convergence order can reach very close to second order, considering accumulation of some unexpected numerical approximation and truncation errors. In fact, our algorithm has clearly demonstrated significant improvement over all related FDTD methods using effective permittivities reported in the literature. Therefore, our new algorithm turns out to be the most effective and stable FDTD method to solve Maxwell's equations involving multiple media.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Brookes, P. J. „Time domain methods for the solution of Maxwell's equations on unstructured grids“. Thesis, Swansea University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636158.

Der volle Inhalt der Quelle
Annotation:
Designers of aerospace vehicle have recently highlighted computational simulations of electromagnetic systems as a key phase of the design process. Problems of interest involve the simulation of electromagnetic waves, over a wide frequency range, interacting with complex geometries of varying electrical length. This thesis represents the investigation and development of efficient numerical techniques for the simulation of time dependent electromagnetic phenomena. Unstructured grid based algorithms, which have already been successfully employed in the simulation of steady inviscid fluid flows, are applied to the solution of Maxwell's linear curl equations. Finite element time domain solution procedures employing element and edge based data structures are investigated and developed, with a view to extending the range of wave frequencies involved in scattering problems. A two-step Taylor-Galerkin procedure is modified to incorporate a capability to model the wave scattering effects of thin wires. In addition, a hybridisation of the Yee finite difference time domain algorithm and a finite volume time domain procedure is shown to alleviate the restriction of employing Cartesian grids to approximate complex geometries, whilst maintaining an attractively low operation court. Current high performance computing resources are exploited through an efficient parallel implementation of an existing edge based solution algorithm. The extended solution capabilities are demonstrated by the simulation of the scattering effects of a complete aircraft.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kim, Joonshik. „Finite Element Time Domain Techniques for Maxwell's Equations Based on Differential Forms“. The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1293588301.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Edelvik, Fredrik. „Hybrid Solvers for the Maxwell Equations in Time-Domain“. Doctoral thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-2156.

Der volle Inhalt der Quelle
Annotation:
The most commonly used method for the time-domain Maxwell equations is the Finite-Difference Time-Domain method (FDTD). This is an explicit, second-order accurate method, which is used on a staggered Cartesian grid. The main drawback with the FDTD method is its inability to accurately model curved objects and small geometrical features. This is due to the Cartesian grid, which leads to a staircase approximation of the geometry and small details are not resolved at all. This thesis presents different ways to circumvent this drawback, but still take advantage of the benefits of the FDTD method. An approach to avoid staircasing errors but still retain the efficiency of the FDTD method is to use a hybrid grid. A few layers of unstructured cells are used close to curved objects and a Cartesian grid is used for the rest of the domain. For the choice of solver on the unstructured grid two different alternatives are compared: an explicit Finite-Volume Time-Domain (FVTD) solver and an implicit Finite-Element Time-Domain (FETD) solver. The hybrid solvers calculate the scattering from complex objects much more efficiently compared to using FDTD on highly resolved Cartesian grids. For the same accuracy in the solution roughly a factor of 10 in memory requirements and a factor of 20 in execution time are gained. The ability to model features that are small relative to the cell size is often important in electromagnetic simulations. In this thesis a technique to generalize a well-known subcell model for thin wires, in order to take arbitrarily oriented wires in FETD and FDTD into account, is proposed. The method gives considerable modeling flexibility compared to earlier methods and is proven stable. The results show excellent consistency and very good accuracy on different antenna configurations. The recursive convolution method is often used to model frequency dispersive materials in FDTD. This method is used to enable modeling of such materials in the unstructured FVTD and FETD solvers. The stability of both solvers is analyzed and their accuracy is demonstrated by computing the radar cross section for homogeneous as well as layered spheres with frequency dependent permittivity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Dosopoulos, Stylianos. „Interior Penalty Discontinuous Galerkin Finite Element Method for the Time-Domain Maxwell's Equations“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1337787922.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Andersson, Ulf. „Time-Domain Methods for the Maxwell Equations“. Doctoral thesis, Stockholm : Tekniska högsk, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3094.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Niegemann, Jens [Verfasser], und K. [Akademischer Betreuer] Busch. „Higher-Order Methods for Solving Maxwell's Equations in the Time-Domain / Jens Niegemann. Betreuer: K. Busch“. Karlsruhe : KIT-Bibliothek, 2009. http://d-nb.info/1014099129/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Boat, Matthew. „The time-domain numerical solution of Maxwell's electromagnetic equations, via the fourth order Runge-Kutta discontinuous Galerkin method“. Thesis, Swansea University, 2008. https://cronfa.swan.ac.uk/Record/cronfa42532.

Der volle Inhalt der Quelle
Annotation:
This thesis presents a high-order numerical method for the Time-Domain solution of Maxwell's Electromagnetic equations in both one- and two-dimensional space. The thesis discuses the validity of high-order representation and improved boundary representation. The majority of the theory is concerned with the formulation of a high-order scheme which is capable of providing a numerical solution for specific two-dimensional scattering problems. Specifics of the theory involve the selection of a suitable numerical flux, the choice of appropriate boundary conditions, mapping between coordinate systems and basis functions. The effectiveness of the method is then demonstrated through a series of examples.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Eng, Ju-Ling. „Higher order finite-difference time-domain method“. Connect to resource, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1165607826.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kung, Christopher W. „Development of a time domain hybrid finite difference/finite element method for solutions to Maxwell's equations in anisotropic media“. Columbus, Ohio : Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1238024768.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Maxwell's equations in time domain"

1

Li, Jichun, und Yunqing Huang. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33789-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Li, Jichun. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Andersson, Ulf. Time-domain methods for the Maxwell equations. Stockholm: Tekniska ho gsk., 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Yeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

C, Hagness Susan, Hrsg. Computational electrodynamics: The finite-difference time-domain method. 3. Aufl. Boston: Artech House, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

C, Hagness Susan, Hrsg. Computational electrodynamics: The finite-difference time-domain method. 2. Aufl. Boston: Artech House, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Maxwell's equations in time domain"

1

Li, Jichun, und Yunqing Huang. „Time-Domain Finite Element Methods for Metamaterials“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 53–125. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Li, Jichun, und Yunqing Huang. „Introduction to Metamaterials“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 1–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Li, Jichun, und Yunqing Huang. „Introduction to Finite Element Methods“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 19–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Li, Jichun, und Yunqing Huang. „Discontinuous Galerkin Methods for Metamaterials“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 127–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Li, Jichun, und Yunqing Huang. „Superconvergence Analysis for Metamaterials“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 151–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Li, Jichun, und Yunqing Huang. „A Posteriori Error Estimation“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 173–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Li, Jichun, und Yunqing Huang. „A Matlab Edge Element Code for Metamaterials“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 195–214. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Li, Jichun, und Yunqing Huang. „Perfectly Matched Layers“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 215–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Li, Jichun, und Yunqing Huang. „Simulations of Wave Propagation in Metamaterials“. In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 241–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Huang, Yunqing, und Jichun Li. „Recent Advances in Time-Domain Maxwell’s Equations in Metamaterials“. In Lecture Notes in Computer Science, 48–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11842-5_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Maxwell's equations in time domain"

1

Pernet, S., X. Ferrieres und G. Cohen. „An Original Finite Element Method to Solve Maxwell's Equations in Time Domain“. In 15th International Zurich Symposium and Technical Exposition on Electromagnetic Compatibility, 279–84. IEEE, 2003. https://doi.org/10.23919/emc.2003.10806302.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Schiller, Oded, Ohad Segal, Yonatan Plotnik und Mordechai Segev. „Time-Domain Bound States in the Continuum“. In CLEO: Fundamental Science, FTh1L.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth1l.4.

Der volle Inhalt der Quelle
Annotation:
We present the concept of temporal Bound States in the Continuum (BIC): bound states in the time dimension embedded in the spatial frequency continuum. These BICs are analytic solutions to Maxwell’s equations in time-varying media.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Beniguel, Y. „Time-Domain Integral Equations for Transient Scattering“. In 8th International Zurich Symposium and Technical Exhibition on Electromagnetic Compatibility, 105–9. IEEE, 1989. https://doi.org/10.23919/emc.1989.10779145.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Liniger, Werner, und Albert Ruehli. „Time Domain Integration Methods for Electric Field Integral Equations“. In 11th International Zurich Symposium and Technical Exhibition on Electromagnetic Compatibility, 209–14. IEEE, 1995. https://doi.org/10.23919/emc.1995.10784314.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Shu, und Zhen Peng. „Space-time parallel computation for time-domain Maxwell's equations“. In 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2017. http://dx.doi.org/10.1109/iceaa.2017.8065615.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

YOUNG, JEFFREY, und FRANK BRUECKNER. „A time domain, weighted residual formulation of Maxwell's equations“. In 31st Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-462.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dosopoulos, Stylianos, und Jin-Fa Lee. „Discontinuous Galerkin Time Domain for Maxwell's equations on GPUs“. In 2010 URSI International Symposium on Electromagnetic Theory (EMTS 2010). IEEE, 2010. http://dx.doi.org/10.1109/ursi-emts.2010.5637389.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Makwana, N. N., und Avijit Chatterjee. „Fast solution of time domain Maxwell's equations using large time steps“. In 2015 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2015. http://dx.doi.org/10.1109/compem.2015.7052651.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wang, Jianying, Jianyan Guo, Ke Zhang, Kun Wang und Yunliang Long. „A novel high-order scheme for time domain Maxwell's equations“. In 2010 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2010. http://dx.doi.org/10.1109/icmmt.2010.5525080.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Luo, Yi. „2.5‐D time‐domain finite‐differencing of the quasistatic Maxwell's equations“. In SEG Technical Program Expanded Abstracts 1992. Society of Exploration Geophysicists, 1992. http://dx.doi.org/10.1190/1.1822121.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Maxwell's equations in time domain"

1

Shankar, Vijaya, W. Hally, C. Rowell und A. Tohammaian. Efficient Time Domain Solutions of Maxwell's Equations for Aerospace Systems. Fort Belvoir, VA: Defense Technical Information Center, April 1995. http://dx.doi.org/10.21236/ada294019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Meagher, Timothy. A New Finite Difference Time Domain Method to Solve Maxwell's Equations. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.6273.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hagstrom, Thomas, und Stephen Lau. Radiation Boundary Conditions for Maxwell's Equations: A Review of Accurate Time-Domain Formulations. Fort Belvoir, VA: Defense Technical Information Center, Januar 2007. http://dx.doi.org/10.21236/ada470448.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Gottlieb, David. High-Order Time-Domain Methods for Maxwells Equations. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada387163.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pingenot, J., und V. Jandhyala. Final Report for Time Domain Boundary Element and Hybrid Finite Element Simulation for Maxwell's Equations. Office of Scientific and Technical Information (OSTI), März 2007. http://dx.doi.org/10.2172/902353.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Elson, J. M. Three Dimensional Finite-Difference Time- Domain Solution of Maxwell's Equations With Perfectly Matched Absorbing Layers. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada369016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Shang, J. S. Characteristic Based Methods for the Time-Domain Maxwell Equations. Fort Belvoir, VA: Defense Technical Information Center, August 1993. http://dx.doi.org/10.21236/ada272973.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Shields, Sidney. Novel methods for the time-dependent Maxwell's equations and their applications. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1352142.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Russo, David, und William A. Jury. Characterization of Preferential Flow in Spatially Variable Unsaturated Field Soils. United States Department of Agriculture, Oktober 2001. http://dx.doi.org/10.32747/2001.7580681.bard.

Der volle Inhalt der Quelle
Annotation:
Preferential flow appears to be the rule rather than the exception in field soils and should be considered in the quantitative description of solute transport in the unsaturated zone of heterogeneous formations on the field scale. This study focused on both experimental monitoring and computer simulations to identify important features of preferential flow in the natural environment. The specific objectives of this research were: (1) To conduct dye tracing and multiple tracer experiments on undisturbed field plots to reveal information about the flow velocity, spatial prevalence, and time evolution of a preferential flow event; (2) To conduct numerical experiments to determine (i) whether preferential flow observations are consistent with the Richards flow equation; and (ii) whether volume averaging over a domain experiencing preferential flow is possible; (3) To develop a stochastic or a transfer function model that incorporates preferential flow. Regarding our field work, we succeeded to develop a new method for detecting flow patterns faithfully representing the movement of water flow paths in structured and non-structured soils. The method which is based on application of ammonium carbonate was tested in a laboratory study. Its use to detect preferential flow was also illustrated in a field experiment. It was shown that ammonium carbonate is a more conservative tracer of the water front than the popular Brilliant Blue. In our detailed field experiments we also succeeded to document the occurrence of preferential flow during soil water redistribution following the cessation of precipitation in several structureless field soils. Symptoms of the unstable flow observed included vertical fingers 20 - 60 cm wide, isolated patches, and highly concentrated areas of the tracers in the transmission zone. Soil moisture and tracer measurements revealed that the redistribution flow became fingered following a reversal of matric potential gradient within the wetted area. Regarding our simulation work, we succeeded to develop, implement and test a finite- difference, numerical scheme for solving the equations governing flow and transport in three-dimensional, heterogeneous, bimodal, flow domains with highly contrasting soil materials. Results of our simulations demonstrated that under steady-state flow conditions, the embedded clay lenses (with very low conductivity) in bimodal formations may induce preferential flow, and, consequently, may enhance considerably both the solute spreading and the skewing of the solute breakthrough curves. On the other hand, under transient flow conditions associated with substantial redistribution periods with diminishing water saturation, the effect of the embedded clay lenses on the flow and the transport might diminish substantially. Regarding our stochastic modeling effort, we succeeded to develop a theoretical framework for flow and transport in bimodal, heterogeneous, unsaturated formations, based on a stochastic continuum presentation of the flow and a general Lagrangian description of the transport. Results of our analysis show that, generally, a bimodal distribution of the formation properties, characterized by a relatively complex spatial correlation structure, contributes to the variability in water velocity and, consequently, may considerably enhance solute spreading. This applies especially in formations in which: (i) the correlation length scales and the variances of the soil properties associated with the embedded soil are much larger than those of the background soil; (ii) the contrast between mean properties of the two subdomains is large; (iii) mean water saturation is relatively small; and (iv) the volume fraction of the flow domain occupied by the embedded soil is relatively large.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie