Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Matrix cooling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Matrix cooling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Matrix cooling"
Yang, Haiwei, Xue Liu, Yuyang Bian und Ge Wang. „Numerical Investigation on the Mechanism of Transpiration Cooling for Porous Struts Based on Local Thermal Non-Equilibrium Model“. Energies 15, Nr. 6 (13.03.2022): 2091. http://dx.doi.org/10.3390/en15062091.
Der volle Inhalt der QuelleBarnes, Stuart, und Ian R. Pashby. „Through-Tool Coolant Drilling of Aluminum/SiC Metal Matrix Composite1“. Journal of Engineering Materials and Technology 122, Nr. 4 (20.04.2000): 384–88. http://dx.doi.org/10.1115/1.1288925.
Der volle Inhalt der QuelleSokolovs, Alvis, und Ilya Galkin. „Matrix Converter Bi-directional Switch Power Loss and Cooling Condition Estimation for Integrated Drives“. Scientific Journal of Riga Technical University. Power and Electrical Engineering 27, Nr. 1 (01.01.2010): 138–41. http://dx.doi.org/10.2478/v10144-010-0036-9.
Der volle Inhalt der QuelleKeshav, M., Shanmukha Nagaraj und Sangamesh Gudda. „Investigation of matrix fin based effluent cooling system“. Journal of Physics: Conference Series 1473 (Februar 2020): 012053. http://dx.doi.org/10.1088/1742-6596/1473/1/012053.
Der volle Inhalt der QuelleRosado, Mário T. S., António J. Lopes Jesus, Igor D. Reva, Rui Fausto und José S. Redinha. „Conformational Cooling Dynamics in Matrix-Isolated 1,3-Butanediol†“. Journal of Physical Chemistry A 113, Nr. 26 (02.07.2009): 7499–507. http://dx.doi.org/10.1021/jp900771g.
Der volle Inhalt der QuelleYu, Zhi Chen, Zhen Li Mi, Qing Wu Cai, Jin Guo und Na Gong. „Effect of Final Rapid Cooling Temperature on Ultra-Fine Carbides of Ti-Mo Ferrite Matrix Microalloyed Steel“. Materials Science Forum 926 (Juli 2018): 3–10. http://dx.doi.org/10.4028/www.scientific.net/msf.926.3.
Der volle Inhalt der QuelleOmrani, E., Ali Shokuhfar, A. Etaati, A. Dorri M. und A. Saatian. „The Effects of Homogenization Time and Cooling Environment on Microstructure and Transformation Temperatures of Ni-42.5wt%Ti-7.5wt%Cu Alloy“. Defect and Diffusion Forum 297-301 (April 2010): 344–50. http://dx.doi.org/10.4028/www.scientific.net/ddf.297-301.344.
Der volle Inhalt der QuelleSong, Wenjun, Min Lei, Mingpan Wan und Chaowen Huang. „Continuous Cooling Transformation Behaviour and Bainite Transformation Kinetics of 23CrNi3Mo Carburised Steel“. Metals 11, Nr. 1 (28.12.2020): 48. http://dx.doi.org/10.3390/met11010048.
Der volle Inhalt der QuelleDiao, Xiao Gang, Zhi Liang Ning, Fu Yang Cao, Shan Zhi Ren und Jian Fei Sun. „Microstructure Evolution of Heavy Section Ductile Iron“. Advanced Materials Research 97-101 (März 2010): 1020–23. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.1020.
Der volle Inhalt der QuelleNirmalan, N. V., und L. D. Hylton. „An Experimental Study of Turbine Vane Heat Transfer With Leading Edge and Downstream Film Cooling“. Journal of Turbomachinery 112, Nr. 3 (01.07.1990): 477–87. http://dx.doi.org/10.1115/1.2927683.
Der volle Inhalt der QuelleDissertationen zum Thema "Matrix cooling"
Fletcher, Daniel Alden. „Internal cooling of turbine blades : the matrix cooling method“. Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360259.
Der volle Inhalt der QuelleMajundar, Pradip. „Analysis of desiccant cooling systems using advanced desiccant matrix structure“. access full-text online access from Digital Dissertation Consortium, 1986. http://libweb.cityu.edu.hk/cgi-bin/er/db/ddcdiss.pl?8707884.
Der volle Inhalt der QuelleLulay, Kenneth Edward. „The effects of cooling on the flow strength of metal matrix composites /“. Thesis, Connect to this title online; UW restricted, 1990. http://hdl.handle.net/1773/7037.
Der volle Inhalt der QuelleSundberg, Jenny. „Heat Transfer Correlations for Gas Turbine Cooling“. Thesis, Linköping University, Department of Mechanical Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5446.
Der volle Inhalt der QuelleA first part of a ”Heat Transfer Handbook” about correlations for internal cooling of gas turbine vanes and blades has been created. The work is based on the cooling of vanes and blades 1 and 2 on different Siemens Gas Turbines. The cooling methods increase the heat transfer in the cooling channels by increasing the heat transfer coefficient and/or increasing the heat transfer surface area. The penalty paid for the increased heat transfer is higher pressure losses.
Three cooling methods, called rib turbulated cooling, matrix cooling and impingement cooling were investigated. Rib turbulated cooling and impingement cooling are typically used in the leading edge or mid region of the airfoil and matrix cooling is mostly applied in the trailing edge region.
Literature studies for each cooling method, covering both open literature and internal reports, were carried out in order to find correlations developed from tests. The correlations were compared and analyzed with focus on suitability for use in turbine conditions. The analysis resulted in recommendations about what correlations to use for each cooling method.
For rib turbulated cooling in square or rectangular ducts, four correlations developed by Han and his co-workers [3.5], [3.8], [3.9] and [3.6] are recommended, each valid for different channel and rib geometries. For U-shaped channels, correlations of Nagoga [3.4] are recommended.
Matrix cooling is relatively unknown in west, but has been used for many years in the former Soviet Union. Therefore available information in open literature is limited. Only one source of correlations was found. The correlations were developed by Nagoga [4.2] and are valid for closed matrixes. Siemens Gas Turbines are cooled with open matrixes, why further work with developing correlations is needed.
For impingement cooling on a flat target plate, a correlation of Florschuetz et al. [5.7] is recommended for inline impingement arrays. For staggered arrays, both the correlations of Florschuetz et al. [5.7] and Höglund [5.8] are suitable. The correlations for impingement on curved target plate gave very different results. The correlation of Nagoga is recommended, but it is also advised to consult the other correlations when calculating heat transfer for a specific case.
Another part of the work has been to investigate the codes of two heat transfer programs named Q3D and Multipass, used in the Siemens offices in Finspång and Lincoln, respectively. Certain changes in the code are recommended.
Maletzke, Fabian. „Investigation Of The Influence Of Geometrical Parameters On Heat Transfer In Matrix Cooling : A Computational Fluid Dynamics Approach“. Thesis, Linköpings universitet, Mekanisk värmeteori och strömningslära, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177185.
Der volle Inhalt der QuelleBaker, Victoria Isabelle. „3D Commutation-Loop Design Methodology for a SiC Based Matrix Converter run in Step-up mode with PCB Aluminum Nitride Cooling Inlay“. Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104361.
Der volle Inhalt der QuelleMaster of Science
In the United States, 40% primary energy consumption comes from electricity generation, which is the fastest growing form of end-use energy. Industries such as commercial airlines are increasing their use of electric energy, while phasing out the mechanical and pneumatic aircraft components, as they offer better performance and lower cost. Thus, implementation of high efficiency, electrical system can reduce energy consumption, fuel consumption and carbon emissions [1]. As more systems rely on this electric power, the conversion from one level of power (voltage and current) to another, is critical. In the quest to develop high efficiency power converters, wide bandgap semiconductor devices are being turned to. These devices, specifically Silicon Carbide (SiC) devices, offer high temperature and high voltage operation that a traditional Silicon (Si) device cannot. Coupled with fast switching transients, these metal oxide semiconductors field effect transistors (MOSFETs), could provide higher levels of efficiency and power density. This work investigates the benefits of a three-dimensional (3D) printed circuit board (PCB) layout. With this type of layout, a critical parasitic – inductance – can be minimized. As the SiC device can operate at high switching speeds, they incur higher di/dt, and dv/dt slew rates. If trace inductance is not minimal, overshoots and ringing will occur. This can be addressed by stacking PCB traces on top of one another, the induced magnetic field can be reduced. In turn, the system inductance is lowered as well. The reduction of this parameter in the system, reduces the overshoot and ringing. This particular work applies this technique to a 15kW matrix converter. This converter poses a particular design challenge as there are a large number of devices, which can lead to longer, higher inductance PCB traces. The goal of this work is to minimize the parasitic inductance in this converter for high efficiency, high power density operation.
Prokš, Jiří. „Zákaznicky upravitelný modul zadní skupinové svítilny s HD rozlišením“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-318409.
Der volle Inhalt der QuelleRusso, Florence. „Matériaux multicaloriques : Application à de nouveaux systèmes de refroidissement“. Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0097/document.
Der volle Inhalt der QuelleThe cooling sector is in constant expansion, the current system is based on the compression/decompression of fluids. In front of environmental and economic problems of this system (nature of frigorigen fluids and their recycling, noise and vibration issues, restrictive regulations), new alternative technological solutions emerge. Thus this thesis provides new cooling systems based on the magnetocaloric and electrocaloric effects respectively present in thin films of fluoropolymer and composites with polymer matrix and magnetocaloric loads. Through physicochemical, electrical, electrocaloric and magnetocaloric characterizations, this work intends to identify the origin of electrocaloric effect in thin terpolymer films P(VDF-TrFE-CTFE) which is a ferroelectric relaxor, but also to study the influence of the magnetocaloric particles La(Fe,Si)H dispersion in a polymer matrix of poly(propylene) on the magnetocaloric phenomenon. In addition, as part of this thesis, a direct measurement device of the electrocaloric effect was developed with Dr. Basso from the INRIM of Turin. The comparison with the indirect measurement method comes up with this phenomenon from a thermodynamic point of view to take stock of the validity of thermodynamic assumptions used in the case of a ferroelectric polymer relaxor
Scheffler, Tim Niclas. „Kollisionskühlung in elektrisch geladener granularer Materie - Collisional cooling in electrical charged granular media“. Gerhard-Mercator-Universitaet Duisburg, 2001. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-05222001-111655/.
Der volle Inhalt der QuelleLisztwanová, Ewa. „Kompozitní materiály se silikátovou matricí do prostředí vysokých teplot“. Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265581.
Der volle Inhalt der QuelleBuchteile zum Thema "Matrix cooling"
König, Valentina, Michael Rom und Siegfried Müller. „A Coupled Two-Domain Approach for Transpiration Cooling“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 33–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_2.
Der volle Inhalt der QuellePeichl, Jonas, Andreas Schwab, Markus Selzer, Hannah Böhrk und Jens von Wolfersdorf. „Innovative Cooling for Rocket Combustion Chambers“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 51–64. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_3.
Der volle Inhalt der QuelleYang, Zhiliang, Bo Wang, Shupei Liu, Jie Ma, Wanping Pan, Shuai Feng, Liang Bai und Jieyu Zhang. „Numerical Simulation of Solidification Microstructure with Active Fiber Cooling for Making Fiber-Reinforced Aluminum Matrix Composites“. In TMS 2016 145th Annual Meeting & Exhibition, 685–92. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48254-5_82.
Der volle Inhalt der QuelleYang, Zhiliang, Bo Wang, Shupei Liu, Jie Ma, Wanping Pan, Shuai Feng, Liang Bai und Jieyu Zhang. „Numerical Simulation of Solidification Microstructure with Active Fiber Cooling for Making Fiber-Reinforced Aluminum Matrix Composites“. In TMS 2016: 145thAnnual Meeting & Exhibition: Supplemental Proceedings, 685–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119274896.ch82.
Der volle Inhalt der QuelleRajendran, Mohan Kumar, Michael Budnitzki und Meinhard Kuna. „Multi-scale Modeling of Partially Stabilized Zirconia with Applications to TRIP-Matrix Composites“. In Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites, 679–721. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42603-3_21.
Der volle Inhalt der QuelleWilson, Sánchez Ocaña, Robayo Bryan, Rodriguez Pablo, Pazmiño Intriago Monserrate und Salazar Jácome Elizabeth. „Analysis of Heat Transfer Between a Coolant Fluid and a Plastic Blowing Matrix Using the ANSYS CFD Tool“. In Advances in Intelligent Systems and Computing, 280–88. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77712-2_27.
Der volle Inhalt der QuelleNemova, Galina. „Density Matrix“. In Field Guide to Laser Cooling Methods. SPIE, 2019. http://dx.doi.org/10.1117/3.2538938.ch13.
Der volle Inhalt der Quelle„Matrix Microstructural Analysis“. In Optical Microscopy of Fiber-Reinforced Composites, 211–22. ASM International, 2010. http://dx.doi.org/10.31399/asm.tb.omfrc.t53030211.
Der volle Inhalt der QuelleGarcia, Amauri, Pedro Goulart, Felipe Bertelli, José Spinelli und Noé Cheung. „Hypoeutectic Al–Fe Alloys: Formation and Characterization of Intermetallics by Dissolution of the Al Matrix“. In Encyclopedia of Aluminum and Its Alloys. Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9781351045636-140000305.
Der volle Inhalt der QuelleKaradimas, George, Konstantinos Salonitis und Konstantinos Georgarakis. „Oxide Ceramic Matrix Composite Materials for Aero-Engine Applications: A Literature Review“. In Advances in Transdisciplinary Engineering. IOS Press, 2021. http://dx.doi.org/10.3233/atde210029.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Matrix cooling"
Borstelmann, Dick. „Active matrix liquid crystal displays for consumer products“. In Spectrally Selective Surfaces for Heating and Cooling Applications, herausgegeben von Claes-Göran Granqvist. SPIE, 2017. http://dx.doi.org/10.1117/12.2284048.
Der volle Inhalt der QuelleGulick, Paul. „Future trends in active addressing passive matrix displays“. In Spectrally Selective Surfaces for Heating and Cooling Applications, herausgegeben von Claes-Göran Granqvist. SPIE, 2017. http://dx.doi.org/10.1117/12.2284049.
Der volle Inhalt der QuelleAli, M., O. Zeitoun, H. Al-Ansary und A. Nuhait. „Air cooling using a matrix of ceramic tubes“. In POROUS MEDIA AND ITS APPLICATIONS IN SCIENCE, ENGINEERING, AND INDUSTRY: Fourth International Conference. AIP, 2012. http://dx.doi.org/10.1063/1.4711192.
Der volle Inhalt der QuellePASKIN, MARC, PHILLIP ROSS, HUKAM MONGIA und WALDO ACOSTA. „Composite matrix cooling scheme for small gas turbine combustors“. In 26th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-2158.
Der volle Inhalt der QuelleOkumuş, F., und A. Turgut. „Thermal Behavior of Aluminum Metal-Matrix Composite During Cooling Process“. In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/rsafp-21744.
Der volle Inhalt der QuelleWilkins, Peter H., Stephen P. Lynch, Karen A. Thole, San Quach, Tyler Vincent und Dominic Mongillo. „Effect of a Ceramic Matrix Composite Surface on Film Cooling“. In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59602.
Der volle Inhalt der QuelleEdelson, Ryan D., und Karen A. Thole. „Impact of Ceramic Matrix Composite Topology on Overall Effectiveness“. In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-82326.
Der volle Inhalt der QuelleRamireddy, Sivasankara Reddy, Siddappa Pallavagere Gurusiddappa, V. Kesavan und S. Kishore Kumar. „Computational Study of Flow and Heat Transfer in Matrix Cooling Channels“. In ASME 2014 Gas Turbine India Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gtindia2014-8252.
Der volle Inhalt der QuelleHassabou, Abdelhakim, Dr Amir Abdallah und ahmed Abotaleb. „Passive Cooling of Photovoltaic Modules in Qatar by Utilizing PCM-Matrix Absorbers“. In ISES Solar World Congress 2019/IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry 2019. Freiburg, Germany: International Solar Energy Society, 2019. http://dx.doi.org/10.18086/swc.2019.16.03.
Der volle Inhalt der QuelleBarnes, S., und I. R. Pashby. „Through-Tool Coolant Drilling of Aluminium/SiC Metal Matrix Composite“. In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0515.
Der volle Inhalt der Quelle