Auswahl der wissenschaftlichen Literatur zum Thema „Mathematics“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Mathematics" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Mathematics"

1

Gokkurt, Burcin, Yasin Soylu und Tugba Ornek. „Mathematical language skills of mathematics teachers“. International Journal of Academic Research 5, Nr. 6 (10.12.2013): 238–45. http://dx.doi.org/10.7813/2075-4124.2013/5-6/b.38.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rismayanti, Afriliani, Sudi Prayitno, Muhammad Turmuzi und Hapipi Hapipi. „Pengaruh Kemampuan Penalaran dan Representasi Matematis terhadap Hasil Belajar Matematika Kelas VIII di SMP“. Griya Journal of Mathematics Education and Application 1, Nr. 3 (30.09.2021): 448–54. http://dx.doi.org/10.29303/griya.v1i3.64.

Der volle Inhalt der Quelle
Annotation:
This Research aims to know about the reasoning ability and mathematic representation ability to the results of mathematic lesson in students grade VIII SMP Negeri 1 Batulayar year academic 2019/2020. This research used quantitative approach with ex post facto research type. The population of this research is the eighth grade students of SMP Negeri 1 Batulayar. In determining the sample, probability sampling technique with the type of cluster sampling was used. The sample in this research is the students of class VIII B SMP Negeri 1 Batulayar amounted to 22 students. Data analysis used was multiple linear regression analysis. From the result of the data analysis we found the significant influence between reasoning ability and representative mathematic’s ability to the mathematics learning result of mathematic lesson in students grade viii smp negeri 1 batulayar year academic 2019/2020 with Fcount = 78,812 > F(2,19) = 3,52. The data we wroute as the same regration that Ŷ=-2,452+0,466X1+0,575X2. The equation show us that reasoning ability and the representative mathematic’s ability increase 1 unit and the learning result will increase to 0,466 from reasoning mathematics ability plus 0,575 representative mathematic’s ability.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rocha, Helena. „Mathematical proof: from mathematics to school mathematics“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, Nr. 2140 (21.01.2019): 20180045. http://dx.doi.org/10.1098/rsta.2018.0045.

Der volle Inhalt der Quelle
Annotation:
Proof plays a central role in developing, establishing and communicating mathematical knowledge. Nevertheless, it is not such a central element in school mathematics. This article discusses some issues involving mathematical proof in school, intending to characterize the understanding of mathematical proof in school, its function and the meaning and relevance attributed to the notion of simple proof. The main conclusions suggest that the idea of addressing mathematical proof at all levels of school is a recent idea that is not yet fully implemented in schools. It requires an adaptation of the understanding of proof to the age of the students, reducing the level of formality and allowing the students to experience the different functions of proof and not only the function of verification. Among the different functions of proof, the function of explanation deserves special attention due to the illumination and empowerment that it can bring to the students and their learning. The way this function of proof relates to the notion of simple proof (and the related aesthetic issues) seems relevant enough to make it, in the future, a focus of attention for the teachers who address mathematical proof in the classroom. This article is part of the theme issue ‘The notion of ‘simple proof’ - Hilbert's 24th problem’.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Turton, Roger W. „Mathematical Lens: Tent Mathematics“. Mathematics Teacher 102, Nr. 5 (Dezember 2008): 356–58. http://dx.doi.org/10.5951/mt.102.5.0356.

Der volle Inhalt der Quelle
Annotation:
Most people go camping to escape the responsibilities of their professional lives. However, for a mathematician, even something as recreational as a tent contains some interesting reminders of mathematical functions. Photograph 1 shows an interior view of one of the zippered flaps of a tent used by the author and his wife for camping.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Turton, Roger W. „Mathematical Lens: Tent Mathematics“. Mathematics Teacher 102, Nr. 5 (Dezember 2008): 356–58. http://dx.doi.org/10.5951/mt.102.5.0356.

Der volle Inhalt der Quelle
Annotation:
Most people go camping to escape the responsibilities of their professional lives. However, for a mathematician, even something as recreational as a tent contains some interesting reminders of mathematical functions. Photograph 1 shows an interior view of one of the zippered flaps of a tent used by the author and his wife for camping.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Karamyshev, Anton N., und Zhanna I. Zaytseva. „“MATHEMATICA” IN TEACHING STUDENTS MATHEMATICS“. Práxis Educacional 15, Nr. 36 (04.12.2019): 610. http://dx.doi.org/10.22481/praxisedu.v15i36.5937.

Der volle Inhalt der Quelle
Annotation:
The relevance of the topic of the article is due to the process of modernization of higher mathematical education in Russia, which has led to a significant change in curricula and the need to look for ways and forms of training that would allow students to learn the necessary material within the time granted for studying, while obtaining the maximum necessary amount of skills, knowledge, and competencies. The objective of the article is to justify the ways and principles of the development and implementation of new pedagogical and information technologies in the educational process, the organization of professional education of students in technical areas based on the integration of mathematics and computer science. The leading method of the study of this problem is the methodological analysis and subsequent synthesis, which, by analyzing the didactic content of the sections in mathematics and the possibilities of the computer mathematical environment called Mathematica, reveals the necessary methods and ways of developing and using modern computer technologies in the mathematical education of engineering students. It is proved that one of the main tools for implementing the methods for solving the indicated problem should be considered a computer, namely, the mathematical environment called Mathematica, and the basic principles of its systemic implementation in the educational process of the university have been identified. The materials of the article may be useful to teachers of mathematical disciplines of higher educational institutions, the computer programs and pedagogical software products created in Mathematica can serve as models for the development of similar pedagogical software products.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Parshall, Karen Hunger, und Jan P. Hogenduk. „The History of Mathematics, the History of Science, Mathematics, andHistoria Mathematica“. Historia Mathematica 23, Nr. 1 (Februar 1996): 1–5. http://dx.doi.org/10.1006/hmat.1996.0001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ochkov, Valery, und Elena Bogomolova. „Teaching Mathematics with Mathematical Software“. Journal of Humanistic Mathematics 5, Nr. 1 (Januar 2015): 265–85. http://dx.doi.org/10.5642/jhummath.201501.15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Usiskin, Zalman. „Mathematical Modeling and Pure Mathematics“. Mathematics Teaching in the Middle School 20, Nr. 8 (April 2015): 476–82. http://dx.doi.org/10.5951/mathteacmiddscho.20.8.0476.

Der volle Inhalt der Quelle
Annotation:
Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wares, Arsalan. „Mathematical art and artistic mathematics“. International Journal of Mathematical Education in Science and Technology 51, Nr. 1 (26.02.2019): 152–56. http://dx.doi.org/10.1080/0020739x.2019.1577996.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Mathematics"

1

Magal, Oran. „What is mathematical about mathematics?“ Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119516.

Der volle Inhalt der Quelle
Annotation:
During a crucial period in the formation of modern-day pure mathematics, Georg Cantor wrote that "the essence of mathematics lies precisely in its freedom". Similarly, David Hilbert, in his landmark work on the axiomatization of geometry, took the view that we are free to interpret the axioms of a mathematical theory as being about whatever can be made to satisfy them, independently of pre-axiomatic ideas, seemingly intuitive truths, or typical empirical scientific applications of that theory. Cantor's and Hilbert's emphasis on the independence of pure mathematics from philosophical preconceptions, empirical applications, and so on raises the question: what is it about?In this dissertation, I argue that essential to mathematics is a certain kind of structural abstraction, which I characterise in detail; furthermore, I maintain that this abstraction has to do with combination and manipulation of symbols. At the same time, I argue that essential to mathematics is also a certain kind of conceptual reflection, and that there is a sense in which mathematics can be said to be a body of truths by virtue of the meaning of its concepts. I argue further that a certain ongoing interplay of intuitive content on the one hand and abstraction or idealization on the other hand plays a significant part in shaping pure mathematics into its modern, axiomatic form. These arguments are made in the course of analyzing and building on the work of both historical and contemporary figures.
À une période cruciale de la formation des mathématiques pures modernes, Georg Cantor déclara que « l'essence des mathématiques, c'est la liberté ». De même, David Hilbert, dont l'oeuvre sur l'axiomatisation de la géométrie fut une étape charnière de l'élaboration des mathématiques modernes, soutenait que nous sommes libres d'interpréter les axiomes d'une théorie mathématique comme se rapportant à tout objet qui leur est conforme, indépendemment des idés préconçues, de ce qui semble intuitivement vrai et des applications scientifiques habituelles de la théorie en question. L'emphase que mettent Cantor et Hilbert sur l'indépendance des mathématiques pures des conceptions philosophiques préalables et des applications empiriques suscite la question: sur quoi, au fond, portent les mathématiques?Dans cette dissertation, je soutiens qu'une certaine forme d'abstraction structurelle, que je décris en détail, est essentielle aux mathématiques; de plus, je maintiens qu'à la base de cette abstraction sont la combinaison et la manipulation de symboles. En même temps, j'estime qu'au coeur des mathématiques est aussi un certain type de réflexion conceptuelle et qu'il existe un sens dans lequel les mathématiques sont un ensemble de vérités en vertu de la signification de leurs concepts. Je conclue qu'une intéraction continue entre le contenu intuitif d'un côté et l'abstraction ou l'idéalisation de l'autre joue un rôle important dans le développement des mathématiques axiomatiques modernes. J'avance ces arguments sur la base d'une analyse de travaux tant historiques que contemporains.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gates, Miriam Rebecca Galpin. „Mathematics Teacher Educators’ Visions for Mathematical Inquiry in Equitable Mathematics Spaces:“. Thesis, Boston College, 2020. http://hdl.handle.net/2345/bc-ir:108775.

Der volle Inhalt der Quelle
Annotation:
Thesis advisor: Lillie R. Albert
In mathematics education, there is an imperative for more just and equitable experiences in mathematics spaces, as well as ongoing efforts to move classroom instruction toward mathematical inquiry. While Mathematics Teacher Educators (MTEs) are expected to support multiple initiatives in mathematics education, they are particularly responsible for the professional learning of teachers and teacher candidates. MTEs must therefore prepare and support the professional learning of teachers to achieve twin goals. This study was designed to understand how MTEs envision their roles in supporting development of teachers across MTEs’ many professional functions in their work toward the twin goals of equity and inquiry. The findings suggest that identifying the forms mathematical knowledge takes is important for mathematical inquiry and that interrogating these forms can be used to counter pervasive social myths about who can do mathematics. Further, MTEs articulated three interrelated values for application of mathematics inquiry teaching for justice and equity: creating space, supporting sense-making, and naming how power and privilege have operated and continue to operate in mathematics spaces. Finally, MTEs described how mathematics inquiry practices are a mode for understanding the world and can be used to promote equity by uncovering biases and assumptions. These findings suggest a promising avenue for leveraging mathematical inquiry to increase equitable outcomes in mathematics spaces
Thesis (PhD) — Boston College, 2020
Submitted to: Boston College. Lynch School of Education
Discipline: Teacher Education, Special Education, Curriculum and Instruction
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gordon, Calvert Lynn Melanie. „Mathematical conversations within the practice of mathematics“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0027/NQ39532.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Newing, A. „Mathematical recreations as a source of new mathematics“. Thesis, University of Bristol, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355096.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wilensky, Uriel Joseph. „Connected mathematics : builiding concrete relationships with mathematical knowledge“. Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/29066.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ferdinand, Victor Allen. „An elementary mathematics methods course and preservice teachers' beliefs about mathematics and mathematical pedagogy: A case study /“. The Ohio State University, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488191124570001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bergman, Ärlebäck Jonas. „Mathematical modelling in upper secondary mathematics education in Sweden“. Doctoral thesis, Linköpings universitet, Tillämpad matematik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-54318.

Der volle Inhalt der Quelle
Annotation:
The aim of this thesis is to investigate and enhance our understanding of the notions of mathematical models and modelling at the Swedish upper secondary school level. Focus is on how mathematical models and modelling are viewed by the different actors in the school system, and what characterises the collaborative process of a didactician and a group of teachers engaged in designing and developing, implementing and evaluating teaching modules (so called modelling modules) exposing students to mathematical modelling in line with the present mathematics curriculum. The thesis consists of five papers and reports, along with a summary introduction, addressing both theoretical and empirical aspects of mathematical modelling. The thesis uses both qualitative and quantitative methods and draws partly on design-based research methodology and cultural-historical activity theory (CHAT). The results of the thesis are presented using the structure of the three curriculum levels of the intended, potentially implemented, and attained curriculum respectively. The results show that since 1965 and to the present day, gradually more and more explicit emphasis has been put on mathematical models and modelling in the syllabuses at this school level. However, no explicit definitions of these notions are provided but described only implicitly, opening up for a diversity of interpretations. From the collaborative work case study it is concluded that the participating teachers could not express a clear conception of the notions mathematical models or modelling, that the designing process often was restrained by constraints originating from the local school context, and that working with modelling highlights many systemic tensions in the established school practice. In addition, meta-results in form of suggestions of how to resolve different kinds of tensions in order to improve the study design are reported. In a questionnaire study with 381 participating students it is concluded that only one out of four students stated that they had heard about or used mathematical models or modelling in their education before, and the expressed overall attitudes towards working with mathematical modelling as represented in the test items were negative. Students’ modelling proficiency was positively affected by the students’ grade, last taken mathematics course, and if they thought the problems in the tests were easy or interesting. In addition empirical findings indicate that so-called realistic Fermi problems given to students working in groups inherently evoke modelling activities.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Holdaway, Emma Lynn. „Mathematical Identities of Students with Mathematics Learning Dis/abilities“. BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8536.

Der volle Inhalt der Quelle
Annotation:
The majority of research on the mathematics teaching and learning of students with mathematics learning dis/abilities is not performed in the field of mathematics education, but in the field of special education. Due to this theoretical divide, students with mathematics learning dis/abilities are far more likely to be in classes that emphasize memorization, direct instruction, and the explicit teaching of rules and procedures. Additionally, students with mathematics learning dis/abilities are often seen as "unable" to succeed in school mathematics and are characterized by their academic difficulties and deficits. The negative assumptions, beliefs, and expectations resulting from ableistic practices in the education system color the interactions educators, parents, and other students have with students with mathematics learning dis/abilities. These interactions in turn influence how students with mathematics learning dis/abilities view and position themselves as learners and doers of mathematics. My study builds on the theoretical framework of positioning theory (Harré, 2012) in order to better understand the mathematical identities of students with mathematics learning dis/abilities. The results of my study show how these students use their prepositions and enduring positions to inform the in-the-moment positions they take on in the mathematics classroom.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shabel, Lisa A. „Mathematics in Kant's critical philosophy : reflections on mathematical practice /“. New York : Routledge, 2003. http://catalogue.bnf.fr/ark:/12148/cb38959242q.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Piatek-Jimenez, Katrina L. „Undergraduate mathematics students' understanding of mathematical statements and proofs“. Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/280643.

Der volle Inhalt der Quelle
Annotation:
This dissertation takes a qualitative look at the understanding of mathematical statements and proofs held by college students enrolled in a transitional course, a course designed to teach students how to write proofs in mathematics. I address the following three research questions: (1) What are students' understandings of the structure of mathematical statements? (2) What are students' understandings of the structure of mathematical proofs? (3) What concerns with the nature of proof do students express when writing proofs? Three individual interviews were held with each of the six participants of the study during the final month of the semester. The first interview was used to gain information about the students' mathematical backgrounds and their thoughts and beliefs about mathematics and proofs. The second and third interviews were task-based, in which the students were asked to write and evaluate proofs. In this dissertation, I document the students' attempts and verbal thoughts while proving mathematical statements and evaluating proofs. The results of this study show that the students often had difficulties interpreting conditional statements and quantified statements of the form, "There exists...for all..." These students also struggled with understanding the structure of proofs by contradiction and induction proofs. Symbolic logic, however, appeared to be a useful tool for interpreting statements and proof structures for those students who chose to use it. When writing proofs, the students tended to emphasize the need for symbolic manipulation. Furthermore, these students expressed concerns with what needs to be justified within a proof, what amount of justification is needed, and the role personal conviction plays within formal mathematical proof. I conclude with a discussion connecting these students' difficulties and concerns with the social nature of mathematical proof by extending the theoretical framework of the Emergent Perspective (Cobb & Yackel, 1996) to also include social norms, sociomathematical norms, and the mathematical practices of the mathematics community.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Mathematics"

1

Gray, Theodore W. Exploring mathematics with Mathematica: Dialogs concerning computers and mathematics. Redwood City, Calif: Addison-Wesley, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nunes, Terezinha. Street mathematics and school mathematicss. New York: Cambridge U P, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Philip, Crooke, Hrsg. Mathematics and Mathematica for economists. Cambridge, Mass: Blackwell, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Litvinov, G. L., und V. P. Maslov, Hrsg. Idempotent Mathematics and Mathematical Physics. Providence, Rhode Island: American Mathematical Society, 2005. http://dx.doi.org/10.1090/conm/377.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

McDuffie, Amy Roth, Hrsg. Mathematical Modeling and Modeling Mathematics. Reston, VA: National Council of Teachers of Mathematics, 2016.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Omel'chenko, Vitaliy, Natal'ya Karasenko, A. Lavrent'ev und V. Stukopin. Mathematics. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1855784.

Der volle Inhalt der Quelle
Annotation:
The textbook describes in detail the basics of discrete mathematics, mathematical analysis, basic numerical methods, elements of linear algebra, probability theory and mathematical statistics. The presentation of the theoretical material is accompanied by a large number of examples and tasks. Tasks for independent work are given. Meets the requirements of the federal state educational standards of secondary vocational education of the latest generation. For students of all specialties of secondary vocational educational institutions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Stojanovic, Srdjan. Computational Financial Mathematics using MATHEMATICA®. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-0043-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Yuhno, Natal'ya. Mathematics. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1002604.

Der volle Inhalt der Quelle
Annotation:
The textbook presents: theoretical material, solved multi-level tasks on topics and practical exercises, test tasks, theoretical questions that form the communicative competence of students in independent work. Meets the requirements of the federal state educational standards of secondary vocational education of the latest generation. It is intended for studying theoretical material and performing independent work in mathematics within the framework of the mandatory hours provided for by the work programs in the discipline PD. 01 "Mathematics: algebra, the beginning of mathematical analysis, geometry" for students of the specialties 23.02.03 "Maintenance and repair of motor transport", 13.02.11"Technical operation and maintenance of electrical and electromechanical equipment (by industry)".
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Clark, Colin Whitcomb. Mathematical bioeconomics: The mathematics of conservation. 3. Aufl. Hoboken, N.J: Wiley, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Peter, Milosav, und Ercegovaca Irene, Hrsg. Mathematics and mathematical logic: New research. Hauppauge, NY: Nova Science Publishers, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Mathematics"

1

Vázquez, Luis. „Applied Mathematics (Mathematical Physics, Discrete Mathematics, Operations Research)“. In Encyclopedia of Sciences and Religions, 114–19. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8265-8_1248.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Buchberger, B. „Mathematica: doing mathematics by computer?“ In Texts and Monographs in Symbolic Computation, 2–20. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-6531-7_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Šikić, Zvonimir. „Mathematical Logic: Mathematics of Logic or Logic of Mathematics“. In Guide to Deep Learning Basics, 1–6. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37591-1_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Closs, Michael P. „Mathematics: Aztec Mathematics“. In Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, 2852–56. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-7747-7_8748.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Closs, Michael P. „Mathematics: Maya Mathematics“. In Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, 2857–62. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-7747-7_9401.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sriraman, Bharath, Narges Yaftian und Kyeong Hwa Lee. „Mathematical Creativity and Mathematics Education“. In The Elements of Creativity and Giftedness in Mathematics, 119–30. Rotterdam: SensePublishers, 2011. http://dx.doi.org/10.1007/978-94-6091-439-3_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Voiron-Canicio, Christine. „Geography, Mathematics and Mathematical Morphology“. In Lecture Notes in Computer Science, 520–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38294-9_44.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Carter, Jessica. „Experimental Mathematics in Mathematical Practice“. In Handbook of the History and Philosophy of Mathematical Practice, 1–13. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-19071-2_121-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pollack, Henry. „Mathematical modeling and discrete mathematics“. In Discrete Mathematics in the Schools, 99–104. Providence, Rhode Island: American Mathematical Society, 2000. http://dx.doi.org/10.1090/dimacs/036/11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Carter, Jessica. „Experimental Mathematics in Mathematical Practice“. In Handbook of the History and Philosophy of Mathematical Practice, 2419–30. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-40846-5_121.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Mathematics"

1

Mohd, Norhatta, Wan Iman Wan Salim und Suriana Ismail. „Exploring Mathematics Anxiety and Mathematics Achievement among Technical Students“. In 2024 International Visualization, Informatics and Technology Conference (IVIT), 51–56. IEEE, 2024. http://dx.doi.org/10.1109/ivit62102.2024.10692548.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Grootenboer, Peter. „Mathematics education: Building mathematical identities“. In 28TH RUSSIAN CONFERENCE ON MATHEMATICAL MODELLING IN NATURAL SCIENCES. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000581.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Schoenefeld, Dale A., und Roger L. Wainwright. „Integration of discrete mathematics topics into the secondary mathematics curriculum using Mathematica“. In the twenty-fourth SIGCSE technical symposium. New York, New York, USA: ACM Press, 1993. http://dx.doi.org/10.1145/169070.169353.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ricks, Thomas. „Overcoming Mathematical Anthropocentrism in Mathematics Education“. In AERA 2022. USA: AERA, 2022. http://dx.doi.org/10.3102/ip.22.1887764.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ricks, Thomas. „Overcoming Mathematical Anthropocentrism in Mathematics Education“. In 2022 AERA Annual Meeting. Washington DC: AERA, 2022. http://dx.doi.org/10.3102/1887764.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hartono, Yusuf, Elika Kurniadi und Weni Dwi Pratiwi. „Mathematics teachers’ perception on mathematical proof“. In THE 2ND NATIONAL CONFERENCE ON MATHEMATICS EDUCATION (NACOME) 2021: Mathematical Proof as a Tool for Learning Mathematics. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0142291.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wickham-Jones, Tom. „Exploring the Beauty of Mathematics with Mathematica“. In Electronic Visualisation and the Arts (EVA 2014). BCS Learning & Development, 2014. http://dx.doi.org/10.14236/ewic/eva2014.59.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wilkerson, Trena L. „Connecting Effective Mathematics Teaching Practices and Mathematical Practices“. In 1st International Conference on Mathematics and Mathematics Education (ICMMEd 2020). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/assehr.k.210508.033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Watt, Stephen M. „On the Mathematics of Mathematical Handwriting Recognition“. In 12th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2010). IEEE, 2010. http://dx.doi.org/10.1109/synasc.2010.93.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Riyanto, Bambang. „Designing Mathematical Modeling Tasks for Learning Mathematics“. In 2nd National Conference on Mathematics Education 2021 (NaCoME 2021). Paris, France: Atlantis Press, 2022. http://dx.doi.org/10.2991/assehr.k.220403.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Mathematics"

1

Bailey, David H., Jonathan M. Borwein, David Broadhurst und Wadim Zudilin. Experimental Mathematics and Mathematical Physics. Office of Scientific and Technical Information (OSTI), Juni 2009. http://dx.doi.org/10.2172/964375.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Näslund-Hadley, Emma, Juan Manuel Hernández Agramonte, Carolina Méndez und Fernando Fernandez. Remote Parent Coaching in Preschool Mathematics: Evidence from Peru. Inter-American Development Bank, August 2022. http://dx.doi.org/10.18235/0004403.

Der volle Inhalt der Quelle
Annotation:
We evaluate the effects of a 10-week intervention that randomly provided access to remote coaching to parents of preschool children over the summer break in Peru. In response to learning losses during COVID-19 induced school closures, education coaches offered guidance and encouragement to parents in activities aimed to accelerate the development of core mathematical skills. We find that the intervention improved mathematics cognitive outcomes by 0.12 standard deviations. Moreover, we show that remote coaches increase the likelihood and frequency of parental engagement in mathematics-related activities, suggesting that learning gains are driven by higher parental involvement in child skill development.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kramarenko, Tetiana H., Olha S. Pylypenko und Vladimir I. Zaselskiy. Prospects of using the augmented reality application in STEM-based Mathematics teaching. [б. в.], Februar 2020. http://dx.doi.org/10.31812/123456789/3753.

Der volle Inhalt der Quelle
Annotation:
The purpose of the study is improving the methodology of teaching Mathematics using cloud technologies and augmented reality, analyzing the peculiarities of the augmented reality technology implementing in the educational process. Attention is paid to the study of adaptation of Augmented Reality technology implementing in teaching mathematical disciplines for students. The task of the study is to identify the problems requiring theoretical and experimental solutions. The object of the study is the process of teaching Mathematics in higher and secondary education institutions. The subject of the study is augmented reality technology in STEM-based Mathematics learning. In the result of the study an overview of modern augmented reality tools and their application practices was carried out. The peculiarities of the mobile application 3D Calculator with Augmented reality of Dynamic Mathematics GeoGebra system usage in Mathematics teaching are revealed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Swetz, Frank J. Mathematics in India. Washington, DC: The MAA Mathematical Sciences Digital Library, März 2009. http://dx.doi.org/10.4169/loci003292.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hammer, Peter L. Discrete Applied Mathematics. Fort Belvoir, VA: Defense Technical Information Center, Mai 1993. http://dx.doi.org/10.21236/ada273552.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bilous, Vladyslav V., Volodymyr V. Proshkin und Oksana S. Lytvyn. Development of AR-applications as a promising area of research for students. [б. в.], November 2020. http://dx.doi.org/10.31812/123456789/4409.

Der volle Inhalt der Quelle
Annotation:
The article substantiates the importance of using augmented reality in the educational process, in particular, in the study of natural and mathematical disciplines. The essence of AR (augmented reality), characteristics of AR hardware and software, directions and advantages of using AR in the educational process are outlined. It has proven that AR is a unique tool that allows educators to teach the new digital generation in a readable, comprehensible, memorable and memorable format, which is the basis for developing a strong interest in learning. Presented the results of the international study on the quality of education PISA (Programme for International Student Assessment) which stimulated the development of the problem of using AR in mathematics teaching. Within the limits of realization of research work of students of the Borys Grinchenko Kyiv University the AR-application on mathematics is developed. To create it used tools: Android Studio, SDK, ARCore, QR Generator, Math pattern. A number of markers of mathematical objects have been developed that correspond to the school mathematics course (topic: “Polyhedra and Functions, their properties and graphs”). The developed AR tools were introduced into the process of teaching students of the specialty “Mathematics”. Prospects of research in development of a technique of training of separate mathematics themes with use of AR have been defined.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ловьянова, И. В. Математическая деятельность старшеклассников как специфический вид учебной деятельности. [б. в.], 2013. http://dx.doi.org/10.31812/0564/2385.

Der volle Inhalt der Quelle
Annotation:
In this article the learning of mathematics is seen as a mathematical training activities. The author describes the features of educational activity: characteristics, psychological content, structure. Determine the nature of mathematical activity and her specifics in senior profile school.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Babicheva, Irina. Presentation and script for the student mathematical KVN "Relaxing with mathematics". Science and Innovation Center Publishing House, November 2020. http://dx.doi.org/10.12731/presentation_and_script.

Der volle Inhalt der Quelle
Annotation:
Презентация и сценарий для студенческого математического КВН «Отдыхаем с математикой» демонстрируют один из возможных вариантов проведения данного мероприятия. Материалы разработаны для оказания методической поддержки организаторам предметных КВН. В математическом КВН могут участвовать две и более команд по 5-7 человек в каждой. КВН составлен из 10 конкурсов: «Визитная карточка», «Биатлон», «Математики шутят», «Ба! Знакомые все лица!», «Шифровальщики», «Эрудицион», «Математика танцует», «Черный ящик», «Перевертыши» и домашнее задание на тему «Как я люблю математику». Все конкурсы сопровождаются музыкой, встроенной в слайды презентации. Условия проведения конкурсов , содержание, критерии оценивания вынесены на слайды и прописаны в сценарии. Ответы к конкурсам имеются в сценарии КВН. Положение о проведении мероприятия также представлено в сценарии. Продолжительность игры – 2 часа. Для работы жюри разработана судейская таблица. Предлагаемые конкурсы легко адаптировать для проведения КВН по другим дисциплинам, на их базе придумывать новые. Все зависит от задумки и творчества организаторов этой игры.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Mhaskar, Hrushikesh N. Research Area 3: Mathematical Sciences: 3.4, Discrete Mathematics and Computer Science. Fort Belvoir, VA: Defense Technical Information Center, Mai 2015. http://dx.doi.org/10.21236/ada625542.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kiianovska, N. M. The development of theory and methods of using cloud-based information and communication technologies in teaching mathematics of engineering students in the United States. Видавничий центр ДВНЗ «Криворізький національний університет», Dezember 2014. http://dx.doi.org/10.31812/0564/1094.

Der volle Inhalt der Quelle
Annotation:
The purpose of the study is the analysis of the development of the theory and methods of ICT usage while teaching higher mathematics engineering students in the United States. It was determined following tasks: to analyze the problem source, to identify the state of its elaboration, to identify key trends in the development of theory and methods of ICT usage while teaching higher mathematics engineering students in the United States, the object of study – the use of ICT in teaching engineering students, the research methods are: analysis of scientific, educational, technical, historical sources; systematization and classification of scientific statements on the study; specification, comparison, analysis and synthesis, historical and pedagogical analysis of the sources to establish the chronological limits and implementation of ICT usage in educational practice of U.S. technical colleges. In article was reviewed a modern ICT tools used in learning of fundamental subjects for future engineers in the United States, shown the evolution and convergence of ICT learning tools. Discussed experience of the «best practices» using online ICT in higher engineering education at United States. Some of these are static, while others are interactive or dynamic, giving mathematics learners opportunities to develop visualization skills, explore mathematical concepts, and obtain solutions to self-selected problems. Among ICT tools are the following: tools to transmit audio and video data, tools to collaborate on projects, tools to support object-oriented practice. The analysis leads to the following conclusion: using cloud-based tools of learning mathematic has become the leading trend today. Therefore, university professors are widely considered to implement tools to assist the process of learning mathematics such properties as mobility, continuity and adaptability.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie