Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Mathematical Sciences.

Zeitschriftenartikel zum Thema „Mathematical Sciences“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Mathematical Sciences" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Thomas, Jan, Michelle Muchatuta und Leigh Wood. „Mathematical sciences in Australia“. International Journal of Mathematical Education in Science and Technology 40, Nr. 1 (15.01.2009): 17–26. http://dx.doi.org/10.1080/00207390802597654.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ziegel, Eric. „Handbook of Mathematical Sciences“. Technometrics 31, Nr. 2 (Mai 1989): 275. http://dx.doi.org/10.1080/00401706.1989.10488546.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

O'Leary, D. P., und S. T. Weidman. „The interface between computer science and the mathematical sciences“. Computing in Science and Engineering 3, Nr. 3 (Mai 2001): 60–65. http://dx.doi.org/10.1109/mcise.2001.919268.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Katz, Emily. „The Mixed Mathematical Intermediates“. PLATO JOURNAL 18 (22.12.2018): 83–96. http://dx.doi.org/10.14195/2183-4105_18_7.

Der volle Inhalt der Quelle
Annotation:
In Metaphysics B.2 and M.2, Aristotle gives a series of arguments against Platonic mathematical objects. On the view he targets, mathematicals are substances somehow intermediate between Platonic forms and sensible substances. I consider two closely related passages in B2 and M.2 in which he argues that Platonists will need intermediates not only for geometry and arithmetic, but also for the so-called mixed mathematical sciences (mechanics, harmonics, optics, and astronomy), and ultimately for all sciences of sensibles. While this has been dismissed as mere polemics, I show that the argument is given in earnest, as Aristotle is committed to its key premises. Further, the argument reveals that Annas’ uniqueness problem (1975, 151) is not the only reason a Platonic ontology needs intermediates (according to Aristotle). Finally, since Aristotle’s objection to intermediates for the mixed mathematical sciences is one he takes seriously, so that it is unlikely that his own account of mathematical objects would fall prey to it, the argument casts doubt on a common interpretation of his philosophy of mathematics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kim, K. H., F. W. Roush und M. D. Intriligator. „Overview of Mathematical Social Sciences“. American Mathematical Monthly 99, Nr. 9 (November 1992): 838. http://dx.doi.org/10.2307/2324119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Dr. Sumit Agarwal, Dr Sumit Agarwal. „Mathematical Modelling In Transportation Sciences“. IOSR Journal of Mathematics 5, Nr. 6 (2013): 39–43. http://dx.doi.org/10.9790/5728-0563943.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kang, Zhou-Zheng, und Tie-Cheng Xia. „American Institute of Mathematical Sciences“. Journal of Applied Analysis & Computation 10, Nr. 2 (2020): 729–39. http://dx.doi.org/10.11948/20190128.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Pulleyblank, W. R. „Mathematical sciences in the nineties“. IBM Journal of Research and Development 47, Nr. 1 (Januar 2003): 89–96. http://dx.doi.org/10.1147/rd.471.0089.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lewis, Hazel. „Mathematical Sciences Strand Outreach Work“. MSOR Connections 11, Nr. 3 (September 2011): 52–56. http://dx.doi.org/10.11120/msor.2011.11030052.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kim, K. H., F. W. Roush und M. D. Intriligator. „Overview of Mathematical Social Sciences“. American Mathematical Monthly 99, Nr. 9 (November 1992): 838–44. http://dx.doi.org/10.1080/00029890.1992.11995938.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Calvetti, Daniela, und Erkki Somersalo. „Life sciences through mathematical models“. Rendiconti Lincei 26, S2 (06.05.2015): 193–201. http://dx.doi.org/10.1007/s12210-015-0422-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Bondar, Olha, und Olexiy Izvalov. „MATHEMATICAL MODELS IN COMPUTER SCIENCES“. TECHNICAL SCIENCES AND TECHNOLOGIES, Nr. 1(35) (2024): 128–34. http://dx.doi.org/10.25140/2411-5363-2024-1(35)-128-134.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Bastos, Nuno R. O., und Touria Karite. „Mathematical Methods in Applied Sciences“. Axioms 13, Nr. 5 (15.05.2024): 327. http://dx.doi.org/10.3390/axioms13050327.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Mazhukin, Vladimir Ivanovich, Žarkop Pavićević, Olga Nikolaevna Koroleva und Alexander Vladimirovich Mazhukin. „To the 80th anniversary from the birth of A.A. Samokhin, doctor of physical and mathematical sciences, chief researcher of the Prokhorov General Physics Institute of the Russian Academy of Sciences“. Mathematica Montisnigri 49 (2020): 111–20. http://dx.doi.org/10.20948/mathmontis-2020-49-9.

Der volle Inhalt der Quelle
Annotation:
The article is dedicated to the 80th anniversary of the birth of the Soviet and Russian theoretical physicist, Doctor of Physical and Mathematical Sciences A.A. Samokhin, Chief Researcher of the Theoretical Department of the Institute of Prokhorov General Physics Institute of the RAS, a regular contributor to Mathematica Montisnigri and a long-term active participant in the international scientific seminar "Mathematical Models and Modeling in Laser-Plasma Processes and Advanced Scientific Technologies" (LPpM3), one of the founders of which is Mathematica Montisnigri.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

KUSUOKA, Shigeo. „Science & Dream Roadmap in the Fields of Mathematical Sciences“. TRENDS IN THE SCIENCES 20, Nr. 3 (2015): 3_16–3_19. http://dx.doi.org/10.5363/tits.20.3_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Ratkó, I. „On special mathematical and computer science methods in medical sciences“. Journal of Mathematical Sciences 92, Nr. 3 (November 1998): 3926–29. http://dx.doi.org/10.1007/bf02432365.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Çetinkaya, Yalçın. „Ibn Khaldun and Music as a Science of Mathematical Sciences“. Journal of Ibn Haldun Studies, Ibn Haldun University 2, Nr. 1 (15.01.2017): 99–104. http://dx.doi.org/10.36657/ihcd.2017.23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Ram, Mangey, Vijay Kumar und G. S. Ladde. „Computational and mathematical approach for recent problems in mathematical sciences“. International Journal for Computational Methods in Engineering Science and Mechanics 22, Nr. 3 (04.05.2021): 169. http://dx.doi.org/10.1080/15502287.2021.1916172.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Witkovský, Viktor, und Ivan Frollo. „Measurement Science is the Science of Sciences - There is no Science without Measurement“. Measurement Science Review 20, Nr. 1 (01.02.2020): 1–5. http://dx.doi.org/10.2478/msr-2020-0001.

Der volle Inhalt der Quelle
Annotation:
AbstractOmnia in mensura et numero et pondere disposuisti is a famous Latin phrase from Solomon’s Book of Wisdom, dated to the mid first century BC, meaning that all things were ordered in measure, number, and weight. Naturally, the wisdom is appearing in its relation to man. The Wisdom of Solomon is understood as the perfection of knowledge of the righteous as a gift from God showing itself in action. Consequently, a natural and obvious conjecture is that measurement science is the science of sciences. In fact, it is a basis of all experimental and theoretical research activities. Each measuring process assumes an object of measurement. Some science disciplines, such as quantum physics, are still incomprehensible despite complex mathematical interpretations. No phenomenon is a real phenomenon unless it is observable in space and time, that is, unless it is a subject to measurement. The science of measurement is an indispensable ingredient in all scientific fields. Mathematical foundations and interpretation of the measurement science were accepted and further developed in most of the scientific fields, including physics, cosmology, geology, environment, quantum mechanics, statistics, and metrology. In this year, 2020, Measurement Science Review celebrates its 20th anniversary and we are using this special opportunity to highlight the importance of measurement science and to express our faith that the journal will continue to be an excellent place for exchanging bright ideas in the field of measurement science. As an illustration and motivation for usage and further development of mathematical methods in measurement science, we briefly present the simple least squares method, frequently used for measurement evaluation, and its possible modification. The modified least squares estimation method was applied and experimentally tested for magnetic field homogeneity adjustment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Kashchenko, Ilya, und Sergey Glyzin. „On the anniversary of Sergei A. Kashchenko“. Izvestiya VUZ. Applied Nonlinear Dynamics 31, Nr. 2 (31.03.2023): 125–27. http://dx.doi.org/10.18500/0869-6632-003035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Khadka, Shree Ram, Santosh Ghimire und Durga Jang K.C. „Some Fundamental Research Tools in Mathematical Sciences“. Journal of Nepal Mathematical Society 6, Nr. 1 (22.08.2023): 70–73. http://dx.doi.org/10.3126/jnms.v6i1.57434.

Der volle Inhalt der Quelle
Annotation:
Research in mathematical sciences either builds up the insight or breaks the boundary of the literature of the pertaining mathematical research area. A mathematical research technique is an attentive, persistent and systematic approach based on the logical rules of inference and mathematical rules of inference to find something new. Mathematical modeling, construction of theorems with the proofs, design of algorithms, data with simulation could be considered as the fundamental tools in mathematical research. In this paper, we discuss some fundamental research tools which are useful to do research in mathematical sciences.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Davison, R., Paul Doucet und Peter B. Sloep. „Mathematical Modelling in the Life Sciences“. Mathematical Gazette 78, Nr. 482 (Juli 1994): 220. http://dx.doi.org/10.2307/3618594.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Cheney, Margaret, und Charles W. Groetsch. „Inverse Problems in the Mathematical Sciences.“ Mathematics of Computation 63, Nr. 208 (Oktober 1994): 820. http://dx.doi.org/10.2307/2153303.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Abrahams, David. „Isaac Newton Institute for Mathematical Sciences“. EMS Newsletter 2019-6, Nr. 112 (06.06.2019): 36–38. http://dx.doi.org/10.4171/news/112/9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

HAGIWARA, Ichiro, Luis DIAGO und Hiroe ABE. „Mathematical Sciences for Self-Driving Car“. Proceedings of Mechanical Engineering Congress, Japan 2021 (2021): W011–01. http://dx.doi.org/10.1299/jsmemecj.2021.w011-01.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Dlab, V., und L. L. Scott. „New Books: Mathematical and Physical Sciences“. Physics Essays 11, Nr. 4 (Dezember 1998): 613. http://dx.doi.org/10.4006/1.3025348.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Cargal, James. „On Teaching in the Mathematical Sciences“. Humanistic Mathematics Network Journal 1, Nr. 6 (Mai 1991): 86–89. http://dx.doi.org/10.5642/hmnj.199101.06.18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Fowler, A. C. „Mathematical Models in the Applied Sciences.“ Biometrics 54, Nr. 4 (Dezember 1998): 1684. http://dx.doi.org/10.2307/2533707.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Vogelius, Michael, und Henry Warchall. „DMS Mathematical Sciences Research Institutes Update“. Notices of the American Mathematical Society 62, Nr. 11 (01.12.2015): 1375–78. http://dx.doi.org/10.1090/noti1322.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Rankin, Samuel M. „Mathematical Sciences in the FY2013 Budget“. Notices of the American Mathematical Society 59, Nr. 10 (01.11.2012): 1. http://dx.doi.org/10.1090/noti913.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Davies, Penny. „The Scottish Mathematical Sciences Training Centre“. MSOR Connections 8, Nr. 4 (November 2008): 8–10. http://dx.doi.org/10.11120/msor.2008.08040008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Collins, Harry. „Mathematical understanding and the physical sciences“. Studies in History and Philosophy of Science Part A 38, Nr. 4 (Dezember 2007): 667–85. http://dx.doi.org/10.1016/j.shpsa.2007.09.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Hadlock, Charles R. „Service-Learning in the Mathematical Sciences“. PRIMUS 23, Nr. 6 (Mai 2013): 500–506. http://dx.doi.org/10.1080/10511970.2012.736453.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Mishra, Satya N., und Mark Carpenter. „Preface: Confluence of the Mathematical Sciences“. American Journal of Mathematical and Management Sciences 28, Nr. 3-4 (Februar 2008): 231–33. http://dx.doi.org/10.1080/01966324.2008.10737726.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Turok, Neil. „The African Institute for Mathematical Sciences“. Annales Henri Poincaré 4, S2 (Dezember 2003): 977–82. http://dx.doi.org/10.1007/s00023-003-0977-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Berger, James. „Statistical and Applied Mathematical Sciences Institute“. Wiley Interdisciplinary Reviews: Computational Statistics 1, Nr. 1 (Juli 2009): 123–27. http://dx.doi.org/10.1002/wics.11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Nakiyingi, Winnie. „African Institute for Mathematical Sciences (AIMS)“. European Mathematical Society Magazine, Nr. 132 (19.06.2024): 48–52. http://dx.doi.org/10.4171/mag/193.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Babenko, V. F., R. O. Bilichenko, M. B. Vakarchuk, O. V. Kovalenko, S. V. Konareva, V. O. Kofanov, T. Yu Leskevych et al. „In memoriam: Lilia Georgiivna Boitsun, a mathematician and bright person“. Researches in Mathematics 29, Nr. 1 (05.07.2021): 3. http://dx.doi.org/10.15421/242101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Editorial Board, ADM. „Fedir Mykolayovych Lyman (22.02.1941–13.06.2020)“. Algebra and Discrete Mathematics 30, Nr. 1 (2020): C—E. http://dx.doi.org/10.12958/adm1749.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Mendelsohn, Joshua. „Aristotle on the Objects of Natural and Mathematical Sciences“. Ancient Philosophy Today 5, Nr. 2 (Oktober 2023): 98–122. http://dx.doi.org/10.3366/anph.2023.0092.

Der volle Inhalt der Quelle
Annotation:
In a series of recent papers, Emily Katz has argued that on Aristotle's view mathematical sciences are in an important respect no different from most natural sciences: They study sensible substances, but not qua sensible. In this paper, I argue that this is only half the story. Mathematical sciences are distinctive for Aristotle in that they study things ‘from’, ‘through’ or ‘in’ abstraction, whereas natural sciences study things ‘like the snub’. What this means, I argue, is that natural sciences must study properties as they occur in the subjects from which they are originally abstracted, even where they reify these properties and treat them as subjects. The objects of mathematical sciences, on the other hand, can be studied as if they did not really occur in an underlying subject. This is because none of the properties of mathematical objects depend on their being in reality features of the subjects from which they are abstracted, such as bodies and inscriptions. Mathematical sciences are in this way able to study what are in reality non-substances as if they were substances.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Turner, Peter R., Rachel Levy und Kathleen Fowler. „Collaboration in the Mathematical Sciences Community on Mathematical Modeling Across the Curriculum“. CHANCE 28, Nr. 4 (02.10.2015): 12–18. http://dx.doi.org/10.1080/09332480.2015.1120122.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Morze, Nataliia V., Iryna V. Mashkina und Mariia A. Boiko. „Experience in training specialists with mathematical computer modeling skills, taking into account the needs of the modern labor market“. CTE Workshop Proceedings 9 (21.03.2022): 95–196. http://dx.doi.org/10.55056/cte.106.

Der volle Inhalt der Quelle
Annotation:
Today in most countries there is a lack of qualifications in areas, which require specialists with mathematical competencies, despite the high unemployment rate in many countries. At the same time, it is generally recognized that most likely those sciences are developing, the fundamental results of which can be formulated mathematically. Using mathematical methods, researchers draw important conclusions that could hardly be obtained otherwise. Digital transformation of all industries requires specialists with a sufficient level of mathematical competence and skills in ICT tools, including computer modeling using the approach called Inquiry-Based Mathematics Education (IBME).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Distelzweig, Peter M. „The Intersection of the Mathematical and Natural Sciences: The Subordinate Sciences in Aristotle“. Apeiron 46, Nr. 2 (April 2013): 85–105. http://dx.doi.org/10.1515/apeiron-2011-0008.

Der volle Inhalt der Quelle
Annotation:
Abstract Aristotle is aware of the mathematical treatment of natural phenomena constitutive of Greek astronomy, optics, harmonics, and mechanics. Here I provide an account of Aristotle’s understanding of these ‘subordinate sciences’, drawing on both his methodological discussions and his optical treatment of the rainbow in Meteorology III 5. This account sheds light on the de Caelo, in which Aristotle undertakes a natural investigation of the heavens distinct from, but closely related to, astronomical (thus mathematical) investigations. Although Aristotle insists that such subordinate sciences belong to mathematical and not natural science, he sees them as essential to complete scientific knowledge of the sensible world.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Siti Norhidayah. „Mathematical Reasoning Ability as a Tool to improve Mathematical Literacy“. Hipotenusa: Journal of Mathematical Society 5, Nr. 2 (17.12.2023): 147–58. http://dx.doi.org/10.18326/hipotenusa.v5i2.565.

Der volle Inhalt der Quelle
Annotation:
Mathematical reasoning is one of the competencies needed to improve mathematical literacy. Mathematical reasoning is very influential in relation to other sciences and in daily life. This research is a descriptive research with the purpose of describing mathematical reasoning ability of Semester 1 students of Mechanical Engineering Study Program of Balikpapan University. The result of the research shows that there is a good mathematical reasoning in Mechanical Engineering 1st Semester Class A1 Academic Year 2023/2024. With good mathematical reasoning, it can be said that their mathematical literacy is also good enough. Mechanical Engineering students who have good mathematical reasoning will be very supportive in understanding other sciences, especially science in the field of Mechanical Engineering. The problems that arise in the process of mathematical reasoning of Mechanical Engineering Semester 1 students include not understanding the meaning of the problem command, difficulty starting the work steps, lack of accuracy when operating numbers, inability to use certain theories / formulas / rules in solving problems, inability to conclude answers, usually the answer only stops at the calculation result without concluding the results. For students whose achievement of mathematical reasoning ability indicators is still low, it can be helped by often practicing working on problems that require mathematical reasoning. This is one way for teachers to improve their students' mathematical reasoning skills.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Levin, Simon A. „Mathematical Ecology, Evolution and the Social Sciences“. Ecology, Economy and Society–the INSEE Journal 4, Nr. 1 (28.01.2021): 5–12. http://dx.doi.org/10.37773/ees.v4i1.401.

Der volle Inhalt der Quelle
Annotation:
The last few decades have seen an enhanced partnership between ecologists and social scientists, especially economists, in addressing the environmental challenges facing societies. Not only do ecology and economics, in particular, need each other; but also the challenges they face are similar and can benefit from cross-fertilization. At the core are scaling from the micro- to the macro, the development of appropriate statistical mechanics to facilitate scaling, features underlying the resilience and robustness of systems, the anticipation of critical transitions and regime shifts, and addressing the conflicts of interest between individual agents and the common good through exploration of cooperation, prosociality and collective decision-making. Confronting these issues will be crucial in the coming years for all nations, especially those in South Asia that will suffer in major ways from the consequences of overpopulation, climate change and other environmental threats.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Mahony, John. „Some mathematical appreciations in the physical sciences“. Mathematical Gazette 105, Nr. 562 (17.02.2021): 4–15. http://dx.doi.org/10.1017/mag.2021.3.

Der volle Inhalt der Quelle
Annotation:
According to reports in the media, there is a dearth of practical examples that students of mathematics en route to their qualification can feast upon, at either sixth form level or an undergraduate level. Despite these alleged shortages, it is this author’s opinion that there are numerous examples that can be drawn from the literature and it is the purpose of this article to address the issue by providing examples from the realms of antenna reflector theory and the use therein of conic sections. Some students will be familiar with conic sections and others might not, but the numerous instances of their manifestation in the real world would suggest that they are a force to be reckoned with, and this is certainly true from a mathematical perspective.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Folland, Gerald B., Nicholas J. Higham und Steven G. Krantz. „Handbook of Writing for the Mathematical Sciences.“ American Mathematical Monthly 105, Nr. 8 (Oktober 1998): 779. http://dx.doi.org/10.2307/2589013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Graham, Chris, und Christian Lawson-Perfect. „E-Assessment in Mathematical Sciences (EAMS) Conference“. MSOR Connections 15, Nr. 2 (26.01.2017): 5. http://dx.doi.org/10.21100/msor.v15i2.495.

Der volle Inhalt der Quelle
Annotation:
The inaugural E-Assessment in Mathematical Sciences (EAMS) conference was held in September2016 at Newcastle University. This two-day conference brought together researchers andpractitioners in the field of mathematical e-assessment and was attended by over 70 delegates fromall corners of the globe. Motivated by a desire to bring together projects and bubbles of developmentaround the world, around 25 speakers gave a mixture of presentations and workshops.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Abbott, Steve, und Nicholas J. Higham. „Handbook of Writing for the Mathematical Sciences“. Mathematical Gazette 83, Nr. 497 (Juli 1999): 335. http://dx.doi.org/10.2307/3619085.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Mahony, John D. „A mathematical approximation in the physical sciences“. Mathematical Gazette 106, Nr. 566 (22.06.2022): 220–32. http://dx.doi.org/10.1017/mag.2022.62.

Der volle Inhalt der Quelle
Annotation:
The business of making mathematical approximations in the physical sciences has a long and noble history. For example, in the earliest days of pyramid construction in ancient Egypt it was necessary to approximate lengths required in construction, especially when they involved irrational numbers. Similarly, surveyors in early Greece seeking to lay out profiles of right-angle triangles or circles on the ground invariably ended up making approximations regarding measurements of required lengths, as indeed is the case today. Practitioners have always faced the problem of having to decide when parameters in theory have been met satisfactorily in the practice of measurement. Further, before the advent of hand-held calculators, students in schools in the UK would have been very familiar with the approximation 22/7 for the transcendental number π, obtained perhaps by comparing (as this author did) the measured circumferences of many laboriously drawn circles of different sizes with their diameters. Despite the advent of sophisticated calculating devices and facilities, such as computers and spreadsheets, the practice of making approximations is still much in evidence in theoretical work in fields associated with physical phenomena. Such approximations often result in formulae that are easy to use and remember, and moreover can produce theoretical results that support directly, or otherwise, results from measurements. In this respect, the practical mathematician does not have to seek results to many decimal places when measurement facilities allow for accuracy to only a few. The purpose of this Article is to illustrate this point by discussing an example drawn from the realms of antenna theory, relating to the performance of a dipole antenna. It is not the purpose here to delve into the derivation of dipole theory, but to extract the relevant information and show how useful mathematical approximations can be employed to simplify a relationship between parameters of interest to an antenna engineer. To this end, it will first be necessary to introduce some antenna concepts that might be new to the reader.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie