Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Mathematical optimization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Mathematical optimization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Mathematical optimization"
Kulcsár, T., und I. Timár. „Mathematical optimization and engineering applications“. Mathematical Modeling and Computing 3, Nr. 1 (01.07.2016): 59–78. http://dx.doi.org/10.23939/mmc2016.01.059.
Der volle Inhalt der QuelleBhardwaj, Suyash, Seema Kashyap und Anju Shukla. „A Novel Approach For Optimization In Mathematical Calculations Using Vedic Mathematics Techniques“. MATHEMATICAL JOURNAL OF INTERDISCIPLINARY SCIENCES 1, Nr. 1 (02.07.2012): 23–34. http://dx.doi.org/10.15415/mjis.2012.11002.
Der volle Inhalt der QuelleChawla, Dr Meenu. „Mathematical optimization techniques“. Pharma Innovation 8, Nr. 2 (01.01.2019): 888–92. http://dx.doi.org/10.22271/tpi.2019.v8.i2n.25454.
Der volle Inhalt der QuelleSuhl, Uwe H. „MOPS — Mathematical optimization system“. European Journal of Operational Research 72, Nr. 2 (Januar 1994): 312–22. http://dx.doi.org/10.1016/0377-2217(94)90312-3.
Der volle Inhalt der QuelleBlaydа, I. A. „OPTIMIZATION OF THE COAL BACTERIAL DESULFURIZATION USING MATHEMATICAL METHODS“. Biotechnologia Acta 11, Nr. 6 (Dezember 2018): 55–66. http://dx.doi.org/10.15407/biotech11.06.055.
Der volle Inhalt der QuelleRequelme Ibáñez, Rosa María, Carlos Abel Reyes Alvarado und Jorge Luis Lozano Cervera. „Mathematical optimization for economic agents“. Revista Ciencia y Tecnología 17, Nr. 3 (09.09.2021): 81–89. http://dx.doi.org/10.17268/rev.cyt.2021.03.07.
Der volle Inhalt der QuelleSezer, Ali Devin, und Gerhard-Wilhelm Weber. „Optimization Methods in Mathematical Finance“. Optimization 62, Nr. 11 (November 2013): 1399–402. http://dx.doi.org/10.1080/02331934.2013.863528.
Der volle Inhalt der QuelleGarcía, J. M., C. A. Acosta und M. J. Mesa. „Genetic algorithms for mathematical optimization“. Journal of Physics: Conference Series 1448 (Januar 2020): 012020. http://dx.doi.org/10.1088/1742-6596/1448/1/012020.
Der volle Inhalt der QuelleGorissen, Bram L., Jan Unkelbach und Thomas R. Bortfeld. „Mathematical Optimization of Treatment Schedules“. International Journal of Radiation Oncology*Biology*Physics 96, Nr. 1 (September 2016): 6–8. http://dx.doi.org/10.1016/j.ijrobp.2016.04.012.
Der volle Inhalt der QuelleFeichtinger, Gustav. „Mathematical Optimization and Economic Analysis“. European Journal of Operational Research 221, Nr. 1 (August 2012): 273–74. http://dx.doi.org/10.1016/j.ejor.2012.03.018.
Der volle Inhalt der QuelleDissertationen zum Thema "Mathematical optimization"
Keanius, Erik. „Mathematical Optimization in SVMs“. Thesis, KTH, Skolan för teknikvetenskap (SCI), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297492.
Der volle Inhalt der QuelleZhou, Fangjun. „Nonmonotone methods in optimization and DC optimization of location problems“. Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/21777.
Der volle Inhalt der QuelleHolm, Åsa. „Mathematical Optimization of HDR Brachytherapy“. Doctoral thesis, Linköpings universitet, Optimeringslära, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-99795.
Der volle Inhalt der QuelleNajafiazar, Bahador. „Mathematical Optimization in Reservoir Management“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for petroleumsteknologi og anvendt geofysikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-27058.
Der volle Inhalt der QuelleSaunders, David. „Applications of optimization to mathematical finance“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq29265.pdf.
Der volle Inhalt der QuelleChang, Tyler Hunter. „Mathematical Software for Multiobjective Optimization Problems“. Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/98915.
Der volle Inhalt der QuelleDoctor of Philosophy
Science and engineering are full of multiobjective tradeoff problems. For example, a portfolio manager may seek to build a financial portfolio with low risk, high return rates, and minimal transaction fees; an aircraft engineer may seek a design that maximizes lift, minimizes drag force, and minimizes aircraft weight; a chemist may seek a catalyst with low viscosity, low production costs, and high effective yield; or a computational scientist may seek to fit a numerical model that minimizes the fit error while also minimizing a regularization term that leverages domain knowledge. Often, these criteria are conflicting, meaning that improved performance by one criterion must be at the expense of decreased performance in another criterion. The solution to a multiobjective optimization problem allows decision makers to balance the inherent tradeoff between conflicting objectives. A related problem is the multivariate interpolation problem, where the goal is to predict the outcome of an event based on a database of past observations, while exactly matching all observations in that database. Multivariate interpolation problems are equally as prevalent and impactful as multiobjective optimization problems. For example, a pharmaceutical company may seek a prediction for the costs and effects of a proposed drug; an aerospace engineer may seek a prediction for the lift and drag of a new aircraft design; or a search engine may seek a prediction for the classification of an unlabeled image. Delaunay interpolation offers a unique solution to this problem, backed by decades of rigorous theory and analytical error bounds, but does not scale to high-dimensional "big data" problems. In this thesis, novel algorithms and software are proposed for solving both of these extremely difficult problems.
ROSSI, FILIPPO. „Mathematical models for selling process optimization“. Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1050078.
Der volle Inhalt der QuelleRossetti, Gaia. „Mathematical optimization techniques for cognitive radar networks“. Thesis, Loughborough University, 2018. https://dspace.lboro.ac.uk/2134/33419.
Der volle Inhalt der QuelleTrescher, Saskia. „Estimating Gene Regulatory Activity using Mathematical Optimization“. Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21900.
Der volle Inhalt der QuelleGene regulation is one of the most important cellular processes and closely interlinked pathogenesis. The elucidation of regulatory mechanisms can be approached by many experimental methods, yet integration of the resulting heterogeneous, large, and noisy data sets into comprehensive models requires rigorous computational methods. A prominent class of methods models genome-wide gene expression as sets of (linear) equations over the activity and relationships of transcription factors (TFs), genes and other factors and optimizes parameters to fit the measured expression intensities. Despite their common root in mathematical optimization, they vastly differ in the types of experimental data being integrated, the background knowledge necessary for their application, the granularity of their regulatory model, the concrete paradigm used for solving the optimization problem and the data sets used for evaluation. We review five recent methods of this class and compare them qualitatively and quantitatively in a unified framework. Our results show that the result overlaps are very low, though sometimes statistically significant. This poor overall performance cannot be attributed to the sample size or to the specific regulatory network provided as background knowledge. We suggest that a reason for this deficiency might be the simplistic model of cellular processes in the presented methods, where TF self-regulation and feedback loops were not represented. We propose a new method for estimating transcriptional activity, named Florae, with a particular focus on the consideration of feedback loops and evaluate its results. Using Floræ, we are able to improve the identification of knockout and knockdown TFs in synthetic data sets. Our results and the proposed method extend the knowledge about gene regulatory activity and are a step towards the identification of causes and mechanisms of regulatory (dys)functions, supporting the development of medical biomarkers and therapies.
Haddon, Antoine. „Mathematical Modeling and Optimization for Biogas Production“. Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS047.
Der volle Inhalt der QuelleAnaerobic digestion is a biological process in which organic compounds are degraded by different microbial populations into biogas (carbon dioxyde and methane), which can be used as a renewable energy source. This thesis works towards developing control strategies and bioreactor designs that maximize biogas production.The first part focuses on the optimal control problem of maximizing biogas production in a chemostat in several directions. We consider the single reaction model and the dilution rate is the controlled variable.For the finite horizon problem, we study feedback controllers similar to those used in practice and consisting in driving the reactor towards a given substrate level and maintaining it there. Our approach relies on establishing bounds of the unknown value function by considering different rewards for which the optimal solution has an explicit optimal feedback that is time-independent. In particular, this technique provides explicit bounds on the sub-optimality of the studied controllers for a broad class of substrate and biomass dependent growth rate functions. With numerical simulations, we show that the choice of the best feedback depends on the time horizon and initial condition.Next, we consider the problem over an infinite horizon, for averaged and discounted rewards. We show that, when the discount rate goes to 0, the value function of the discounted problem converges and that the limit is equal to the value function for the averaged reward. We identify a set of optimal solutions for the limit and averaged problems as the controls that drive the system towards a state that maximizes the biogas flow rate on an special invariant set.We then return to the problem over a fixed finite horizon and with the Pontryagin Maximum Principle, we show that the optimal control has a bang singular arc structure. We construct a one parameter family of extremal controls that depend on the constant value of the Hamiltonian. Using the Hamilton-Jacobi-Bellman equation, we identify the optimal control as the extremal associated with the value of the Hamiltonian which satisfies a fixed point equation. We then propose a numerical algorithm to compute the optimal control by solving this fixed point equation. We illustrate this method with the two major types of growth functions of Monod and Haldane.In the second part, we investigate the impact of mixing the reacting medium on biogas production. For this we introduce a model of a pilot scale upflow fixed bed bioreactor that offers a representation of spatial features. This model takes advantage of reactor geometry to reduce the spatial dimension of the section containing the fixed bed and in other sections, we consider the 3D steady-state Navier-Stokes equations for the fluid dynamics. To represent the biological activity, we use a 2 step model and for the substrates, advection-diffusion-reaction equations. We only consider the biomasses that are attached in the fixed bed section and we model their growth with a density dependent function. We show that this model can reproduce the spatial gradient of experimental data and helps to better understand the internal dynamics of the reactor. In particular, numerical simulations indicate that with less mixing, the reactor is more efficient, removing more organic matter and producing more biogas
Bücher zum Thema "Mathematical optimization"
Snyman, Jan A., und Daniel N. Wilke. Practical Mathematical Optimization. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77586-9.
Der volle Inhalt der QuelleL, Rardin Ronald, Hrsg. Discrete optimization. Boston: Academic Press, 1988.
Den vollen Inhalt der Quelle findenDingzhu, Du, Pardalos P. M. 1954- und Wu Weili, Hrsg. Mathematical theory of optimization. Dordrecht: Kluwer Academic, 2001.
Den vollen Inhalt der Quelle findenHoffmann, Karl-Heinz, Jochem Zowe, Jean-Baptiste Hiriart-Urruty und Claude Lemarechal, Hrsg. Trends in Mathematical Optimization. Basel: Birkhäuser Basel, 1988. http://dx.doi.org/10.1007/978-3-0348-9297-1.
Der volle Inhalt der QuellePallaschke, Diethard, und Stefan Rolewicz. Foundations of Mathematical Optimization. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-017-1588-1.
Der volle Inhalt der QuelleHürlimann, Tony. Mathematical Modeling and Optimization. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-5793-4.
Der volle Inhalt der QuelleDu, Ding-Zhu, Panos M. Pardalos und Weili Wu, Hrsg. Mathematical Theory of Optimization. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-5795-8.
Der volle Inhalt der QuelleOberwolfach), Tagung Methoden und Verfahren der Mathematischen Physik (11th 1985 Mathematisches Forschungsinstitut. Optimization in mathematical physics. Frankfurt am Main: P. Lang, 1987.
Den vollen Inhalt der Quelle findenDu, Dingzhu. Mathematical Theory of Optimization. Boston, MA: Springer US, 2001.
Den vollen Inhalt der Quelle findenGuddat, Jürgen. Multiobjective and stochastic optimization based on parametric optimization. Berlin: Akademie-Verlag, 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Mathematical optimization"
Schittkowski, Klaus. „Mathematical Optimization“. In Software Systems for Structural Optimization, 33–42. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8553-9_2.
Der volle Inhalt der QuelleWang, Liang, und Jianxin Zhao. „Mathematical Optimization“. In Architecture of Advanced Numerical Analysis Systems, 87–119. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-8853-5_4.
Der volle Inhalt der QuellePappalardo, Elisa, Panos M. Pardalos und Giovanni Stracquadanio. „Mathematical Optimization“. In SpringerBriefs in Optimization, 13–25. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9053-1_3.
Der volle Inhalt der QuelleCao, Bing-Yuan. „Mathematical Preliminaries“. In Applied Optimization, 1–22. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0009-4_1.
Der volle Inhalt der QuelleKogan, Konstantin, und Eugene Khmelnitsky. „Mathematical Background“. In Applied Optimization, 19–35. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4675-7_2.
Der volle Inhalt der QuelleSchittkowski, Klaus. „Mathematical Foundations“. In Applied Optimization, 7–118. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4419-5762-7_2.
Der volle Inhalt der QuelleBelenky, Alexander S. „Mathematical Programming“. In Applied Optimization, 13–90. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-6075-0_2.
Der volle Inhalt der QuelleLobato, Fran Sérgio, und Valder Steffen. „Mathematical“. In Multi-Objective Optimization Problems, 77–108. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58565-9_5.
Der volle Inhalt der QuelleNeumaier, Arnold. „Mathematical Model Building“. In Applied Optimization, 37–43. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4613-0215-5_3.
Der volle Inhalt der QuelleBhatti, M. Asghar. „Mathematical Preliminaries“. In Practical Optimization Methods, 75–129. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-0501-2_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Mathematical optimization"
De Kock, D. J., M. Nagulapally, J. A. Visser, R. Nair und J. Nigen. „Mathematical Optimization of Electronic Enclosures“. In ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73185.
Der volle Inhalt der QuelleFindeisen, Bernd, Mario Schwalbe, Norman Gunther und Lutz Stiegler. „NVH Optimization of Driveline with Mathematical Optimization Methods“. In Symposium on International Automotive Technology 2013. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2013. http://dx.doi.org/10.4271/2013-26-0089.
Der volle Inhalt der QuellePoole, Daniel J., Christian B. Allen und T. Rendall. „Metric-Based Mathematical Derivation of Aerofoil Design Variables“. In 10th AIAA Multidisciplinary Design Optimization Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-0114.
Der volle Inhalt der QuelleMorris, R. M., J. A. Snyman und Josua P. Meyer. „MATHEMATICAL OPTIMIZATION OF JETS IN CROSSFLOW“. In Annals of the Assembly for International Heat Transfer Conference 13. Begell House Inc., 2006. http://dx.doi.org/10.1615/ihtc13.p26.200.
Der volle Inhalt der QuelleEWING, M., und V. VENKAYYA. „Structural identification using mathematical optimization techniques“. In 32nd Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-1135.
Der volle Inhalt der QuelleAlmosa, Nadia Ali Abbas, und Ahmed Sabah Al-Jilawi. „Developing mathematical optimization models with Python“. In AL-KADHUM 2ND INTERNATIONAL CONFERENCE ON MODERN APPLICATIONS OF INFORMATION AND COMMUNICATION TECHNOLOGY. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0119585.
Der volle Inhalt der QuelleLee, Eva K., Tsung-Lin Wu, Onur Seref, O. Erhun Kundakcioglu und Panos Pardalos. „Classification and disease prediction via mathematical programming“. In DATA MINING, SYSTEMS ANALYSIS AND OPTIMIZATION IN BIOMEDICINE. AIP, 2007. http://dx.doi.org/10.1063/1.2817343.
Der volle Inhalt der QuelleHerskovits, José. „A Mathematical Programming Algorithm for Multidisciplinary Design Optimization“. In 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-4502.
Der volle Inhalt der QuelleChaabane, Amin. „Sustainable supply chains optimization: Mathematical modelling approach“. In 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO 2013). IEEE, 2013. http://dx.doi.org/10.1109/icmsao.2013.6552611.
Der volle Inhalt der QuelleDoblas-Charneco, Francisco Javier, Domingo Morales-Palma, Aida Estevez und Carpoforo Vallellano. „Mathematical Optimization of Cold Wire Drawing Operations“. In 10th Manufacturing Engineering Society International Conference. Switzerland: Trans Tech Publications Ltd, 2023. http://dx.doi.org/10.4028/p-3lhbry.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Mathematical optimization"
Lovianova, Iryna V., Dmytro Ye Bobyliev und Aleksandr D. Uchitel. Cloud calculations within the optional course Optimization Problems for 10th-11th graders. [б. в.], September 2019. http://dx.doi.org/10.31812/123456789/3267.
Der volle Inhalt der QuelleVenkayya, Vipperla B., und Victoria A. Tischler. A Compound Scaling Algorithm for Mathematical Optimization. Fort Belvoir, VA: Defense Technical Information Center, Februar 1989. http://dx.doi.org/10.21236/ada208446.
Der volle Inhalt der QuelleEskow, Elizabeth, und Robert B. Schnabel. Mathematical Modeling of a Parallel Global Optimization Algorithm. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada446514.
Der volle Inhalt der QuelleDe Silva, K. N. A mathematical model for optimization of sample geometry for radiation measurements. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1988. http://dx.doi.org/10.4095/122732.
Der volle Inhalt der QuelleWegley, H. L., und J. C. Barnard. Using the NOABL flow model and mathematical optimization as a micrositing tool. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/6979883.
Der volle Inhalt der QuelleTurinsky, Paul, und Ross Hays. Development and Utilization of mathematical Optimization in Advanced Fuel Cycle Systems Analysis. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1024390.
Der volle Inhalt der QuelleIyer, Ananth V., Samuel Labi, Steven R. Dunlop, Dutt J. Thakkar, Sayak Mishra, Lavanya Krishna Kumar, Runjia Du, Miheeth Gala, Apoorva Banerjee und Gokul Siddharthan. Heavy Fleet and Facilities Optimization. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317365.
Der volle Inhalt der QuelleHector Colonmer, Prabhu Ganesan, Nalini Subramanian, Dr. Bala Haran, Dr. Ralph E. White und Dr. Branko N. Popov. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/808855.
Der volle Inhalt der QuelleAnand Durairajan, Bala Haran, Branko N. Popov und Ralph E. White. OPTIMIZATION OF THE CATHODE LONG TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING. Office of Scientific and Technical Information (OSTI), Mai 2000. http://dx.doi.org/10.2172/808968.
Der volle Inhalt der QuelleDr. Ralph E. White. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/808969.
Der volle Inhalt der Quelle