Auswahl der wissenschaftlichen Literatur zum Thema „Mathematical models“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Mathematical models" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Mathematical models":

1

Gardiner, Tony, und Gerd Fischer. „Mathematical Models“. Mathematical Gazette 71, Nr. 455 (März 1987): 94. http://dx.doi.org/10.2307/3616334.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Denton, Brian, Pam Denton und Peter Lorimer. „Making Mathematical Models“. Mathematical Gazette 78, Nr. 483 (November 1994): 364. http://dx.doi.org/10.2307/3620232.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pavankumari, V. „Mathematical and Stochastic Growth Models“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. 11 (30.11.2021): 1576–82. http://dx.doi.org/10.22214/ijraset.2021.39055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract: Many statistical and mathematical models of growth are developed in the literature and effectively applied to various conditions in the existent world that involve many research problems in the different fields of applied statistics. Nevertheless, still, there is an equally large number of conditions, which have not yet been mathematically or statistically modeled, due to the complex situations or formed models are mathematically or statistically inflexible. The present study is based on mathematical and stochastic growth models. The specification of both the growth models is depicted. A detailed study of newly modified growth models is mentioned. This research will give substantial information on growth models, such as proposed modified exponential growth models and their specifications clearly motioned which gives scope for future research.
4

Kumari, V. Pavan, Venkataramana Musala und M. Bhupathi Naidu. „Mathematical and Stochastic Growth Models“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 5 (31.05.2022): 987–89. http://dx.doi.org/10.22214/ijraset.2022.42330.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract: Many statistical and mathematical models of growth are developed in the literature and effectively applied to various conditions in the existent world involves many research problems in the different fields of applied statistics. Nevertheless, still, there are an equally a large number of conditions, which have not yet been mathematically or statistically modeled, due to the complex situations or formed models are mathematically or statistically inflexible. The present study is based on mathematical and stochastic growth models. The specification of both the growth models is depicted. A details study of newly modified growth models are mentioned. This research will give substantial information on growth models, such as proposed modified exponential growth models and it’s specifications clearly motioned which gives scope for future research.
5

Suzuki, Takashi. „Mathematical models of tumor growth systems“. Mathematica Bohemica 137, Nr. 2 (2012): 201–18. http://dx.doi.org/10.21136/mb.2012.142866.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kogalovsky, M. R. „Digital Libraries of Economic-Mathematical Models: Economic-Mathematical and Information Models“. Market Economy Problems, Nr. 4 (2018): 89–97. http://dx.doi.org/10.33051/2500-2325-2018-4-89-97.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Banasiak, J. „Kinetic models – mathematical models of everything?“ Physics of Life Reviews 16 (März 2016): 140–41. http://dx.doi.org/10.1016/j.plrev.2016.01.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Staribratov, Ivaylo, und Nikol Manolova. „Application of Mathematical Models in Graphic Design“. Mathematics and Informatics LXV, Nr. 1 (28.02.2022): 72–81. http://dx.doi.org/10.53656/math2022-1-5-app.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The article shares the practical experience in creating graphic design in the implementation of projects in the field of applied information technology. The creation of digital art is largely based on mathematical models and concepts that give a good perception of graphics, and it is scientifically justified. The STEAM approach is considered with the idea of the transdisciplinary level of integration between mathematics, graphic design and production practice in student education. For the development of projects like logo design, magazine cover and others, we use software specialized in the field of graphic design and computer graphics. For the realization of the considered projects, among which there are also awarded ones, we use CorelDRAW, Adobe InDesign and Desmos.
9

LEVKIN, Dmytro. „ARCHITECTONICS OF CALCULATED MATHEMATICAL MODELS UNDER UNCERTAINTY“. Herald of Khmelnytskyi National University. Technical sciences 309, Nr. 3 (26.05.2022): 135–37. http://dx.doi.org/10.31891/2307-5732-2022-309-3-135-137.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This article concerns the improvement of calculated mathematical models of technological, biotechnological, and economic systems. It is necessary to increase the number of considered parameters to increase the accuracy of calculating the parameters of complex systems during mathematical modeling. This leads to the need to solve nonlocal boundary value problems with non-stationary differential equations, to prove the correctness of which it is impossible to apply the traditional theory of existence and unity of solution. Note that after the architecture of boundary value problems assumes the existence of their solution, it is only necessary to prove its uniqueness. To prove the correctness of calculated mathematical models requires neither generalizing the parameters of the goal function and using approximate constraints, which, in turn, will reduce the boundary value problem to a standard form and its correctness will not be in doubt, nor propose a method to prove the correctness of boundary value certain differential equations, which will consider the specific features of the modeled processes. A separate technique must substantiate the correctness of boundary value problems depending on the type of differential equation that describes the physical and economic processes in the simulated systems. This article studied the conditions for the correctness of boundary value problems for differential equations with constant coefficients. It is proved that there is a corresponding boundary value problem for arbitrary homogeneous differential equations. It is defined the parabolic boundary value problems in terms that use constraints from above on the fundamental solution function. The conditions were obtained under which the parabolic boundary value problem exists and cannot exist, respectively. The obtained results will increase the accuracy of the main optimization task of improving the quality of simulated processes.
10

Kleiner, Johannes. „Mathematical Models of Consciousness“. Entropy 22, Nr. 6 (30.05.2020): 609. http://dx.doi.org/10.3390/e22060609.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In recent years, promising mathematical models have been proposed that aim to describe conscious experience and its relation to the physical domain. Whereas the axioms and metaphysical ideas of these theories have been carefully motivated, their mathematical formalism has not. In this article, we aim to remedy this situation. We give an account of what warrants mathematical representation of phenomenal experience, derive a general mathematical framework that takes into account consciousness’ epistemic context, and study which mathematical structures some of the key characteristics of conscious experience imply, showing precisely where mathematical approaches allow to go beyond what the standard methodology can do. The result is a general mathematical framework for models of consciousness that can be employed in the theory-building process.

Dissertationen zum Thema "Mathematical models":

1

Tonner, Jaromír. „Overcomplete Mathematical Models with Applications“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-233893.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Chen, Donoho a Saunders (1998) studují problematiku hledání řídké reprezentace vektorů (signálů) s použitím speciálních přeurčených systémů vektorů vyplňujících prostor signálu. Takovéto systémy (někdy jsou také nazývány frejmy) jsou typicky vytvořeny buď rozšířením existující báze, nebo sloučením různých bazí. Narozdíl od vektorů, které tvoří konečně rozměrné prostory, může být problém formulován i obecněji v rámci nekonečně rozměrných separabilních Hilbertových prostorů (Veselý, 2002b; Christensen, 2003). Tento funkcionální přístup nám umožňuje nacházet v těchto prostorech přesnější reprezentace objektů, které, na rozdíl od vektorů, nejsou diskrétní. V této disertační práci se zabývám hledáním řídkých representací v přeurčených modelech časových řad náhodných veličin s konečnými druhými momenty. Numerická studie zachycuje výhody a omezení tohoto přístupu aplikovaného na zobecněné lineární modely a na vícerozměrné ARMA modely. Analýzou mnoha numerických simulací i modelů reálných procesů můžeme říci, že tyto metody spolehlivě identifikují parametry blízké nule, a tak nám umožňují redukovat původně špatně podmíněný přeparametrizovaný model. Tímto významně redukují počet odhadovaných parametrů. V konečném důsledku se tak nemusíme starat o řády modelů, jejichž zjišťování je většinou předběžným krokem standardních technik. Pro kratší časové řady (100 a méně vzorků) řídké odhady dávají lepší predikce v porovnání s těmi, které jsou založené na standardních metodách (např. maximální věrohodnosti v MATLABu - MATLAB System Identification Toolbox (IDENT)). Pro delší časové řady (500 a více) obě techniky dávají v podstatě stejně přesné predikce. Na druhou stranu řešení těchto problémů je náročnější, a to i časově, nicméně výpočetní doba je stále přijatelná.
2

Widmer, Tobias K. „Reusable mathematical models“. Zürich : ETH, Eidgenössische Technische Hochschule Zürich, Department of Computer Science, Chair of Software Engineering, 2004. http://e-collection.ethbib.ethz.ch/show?type=dipl&nr=192.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Maggiori, Claudia. „Mathematical models in biomedicine“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21247/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In questa tesi vengono innanzitutto presentati due metodi matematici per lo studio di modelli biomedici e comportamentali. I modelli presentati sono tre: un modello per lo studio dell'evoluzione della malattia di Alzheimer, uno per lo studio dello sviluppo dei tumori e uno per la diffusione del Covid-19. Si riportano anche alcuni codici utilizzati per lo studio e lo sviluppo dei modelli trattati. Le conclusioni contengono alcuni possibili sviluppi degli argomenti trattati.
4

Mathewson, Donald Jeffrey. „Mathematical models of immunity“. Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29575.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A cross-linking model for the activation of the A cell or immune accessory cell as a function of certain extracellular conditions is developed to determine the valency of the specific factor receptor on the A cell surface. It is found that such a determination can be made based on the FWHM of cross-linking curves which differ by a full order of magnitude between the bivalent receptor case and the monovalent receptor case. This determination can be made provided one can obtain accurate values for the equilibrium constants which characterize the system and provided that activation and IL-1 secretion is a linear function of cross-linking. It is also found that a determination of valence can be made if the equilibrium constants are such that substantial one receptor bridge formation takes place (one antibody molecule bound on both ends by the same receptor). This one-receptor bridge formation only takes place if the receptor is bivalent, and it presents itself in the cross-linking curve in a very distinctive manner. A second network model described as an ecological competition model of steady state lymphocyte populations is presented. This model, known as the symmetrical network theory is analysed numerically by integration of the differential equations and shown to provide a reasonable qualitative picture of the immune system's stable steady states, and offer a glimpse of state switching.
Science, Faculty of
Physics and Astronomy, Department of
Graduate
5

Heron, Dale Robert. „Mathematical models of superconductivity“. Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296893.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bozic, Ivana. „Mathematical Models of Cancer“. Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10220.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Major efforts to sequence cancer genomes are now occurring throughout the world. Though the emerging data from these studies are illuminating, their reconciliation with epidemiologic and clinical observations poses a major challenge. Here we present mathematical models that begin to address this challenge. First we present a model of accumulation of driver and passenger mutations during tumor progression and derive a formula for the number of driver mutations as a function of the total number of mutations in a tumor. Fitting this formula to recent experimental data, we were able to calculate the selective advantage provided by a typical driver mutation. Second, we performed a quantitative analysis of pancreatic cancer metastasis genetic data. The results of this analysis define a broad time window for detection of pancreatic cancer before metastatic dissemination. Finally, we model the evolution of resistance to targeted cancer therapy. We apply our model to experimental data on the response to panitumumab, targeted therapy against colorectal cancer. Our modeling suggested that cells resistant to therapy were likely present in patients’ tumors prior to the start of therapy.
Mathematics
7

Luther, Roger. „Mathematical models of kleptoparasitism“. Thesis, University of Sussex, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410365.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The phenomenon of kleptoparasitism - "food-stealing" - has frequently been observed, in a wide range of animal species. In this thesis, I extend the game-theoretic model of kleptoparasitism, proposed by Broom and Ruxton 1998, in a number of ways. Firstly, using their model, I investigate how quickly the equilibrium state of a kleptoparasitic population is reached. This work has been published (Luther and Broom 2004). I then investigate the case of a single homogenous population of kleptoparasites, finding which behaviours are Evolutionarily Stable Strategies. This is done with a variable probability that a challenger succeeds when attempting to steal food from a handler, and also allowing the possibility that the handler does not resist the attack. This work has been published (Broom et al 2004) I then consider populations of two groups, one stealing and the other only foraging, to find ESS's, particularly looking at situations where a mixed population can be an ESS, and other cases where pure populations are an ESS. I do this for indistinguishable groups, and then distinguishable groups. I show that a homogenous facultative population behaving in the Broom and Ruxton 1998 ESS has the same handling ratio as a mixed obligate population of kleptoparasites and foragers. Finally, I discuss some ornithological data on kleptoparasitism, and make a simple comparison with our models, to see if they are an accurate representation of the actual phenomenon
8

Mazzag, Barbara Cathrine. „Mathematical models in biology /“. For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Niederhauser, Beat. „Mathematical Aspects of Hopfield models“. [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=960147535.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kowalewski, Jacob. „Mathematical Models in Cellular Biophysics“. Licentiate thesis, KTH, Applied Physics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4361.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:

Cellular biophysics deals with, among other things, transport processes within cells. This thesis presents two studies where mathematical models have been used to explain how two of these processes occur.

Cellular membranes separate cells from their exterior environment and also divide a cell into several subcellular regions. Since the 1970s lateral diffusion in these membranes has been studied, one the most important experimental techniques in these studies is fluorescence recovery after photobleach (FRAP). A mathematical model developed in this thesis describes how dopamine 1 receptors (D1R) diffuse in a neuronal dendritic membrane. Analytical and numerical methods have been used to solve the partial differential equations that are expressed in the model. The choice of method depends mostly on the complexity of the geometry in the model.

Calcium ions (Ca2+) are known to be involved in several intracellular signaling mechanisms. One interesting concept within this field is a signaling microdomain where the inositol 1,4,5-triphosphate receptor (IP3R) in the endoplasmic reticulum (ER) membrane physically interacts with plasma membrane proteins. This microdomain has been shown to cause the intracellular Ca2+ level to oscillate. The second model in this thesis describes a signaling network involving both ER membrane bound and plasma membrane Ca2+ channels and pumps, among them store-operated Ca2+ (SOC) channels. A MATLAB® toolbox was developed to implement the signaling networks and simulate its properties. This model was also implemented using Virtual cell.

The results show a high resemblance between the mathematical model and FRAP data in the D1R study. The model shows a distinct difference in recovery characteristics of simulated FRAP experiments on whole dendrites and dendritic spines, due to differences in geometry. The model can also explain trapping of D1R in dendritic spines.

The results of the Ca2+ signaling model show that stimulation of IP3R can cause Ca2+ oscillations in the same frequency range as has been seen in experiments. The removing of SOC channels from the model can alter the characteristics as well as qualitative appearance of Ca2+ oscillations.


Cellulär biofysik behandlar bland annat transportprocesser i celler. I denna avhandling presenteras två studier där matematiska modeller har använts för att förklara hur två av dess processer uppkommer.

Cellmembran separerar celler från deras yttre miljö och delar även upp en cell i flera subcellulära regioner. Sedan 1970-talet har lateral diffusion i dessa membran studerats, en av de viktigaste experimentella metoderna i dessa studier är fluorescence recovery after photobleach (FRAP). En matematisk modell utvecklad i denna avhandling beskriver hur dopamin 1-receptorer (D1R) diffunderar i en neural dendrits membran. Analytiska och numeriska metoder har använts för att lösa de partiella differentialekvationer som uttrycks i modellen. Valet av metod beror främst på komplexiteten hos geometrin i modellen.

Kalciumjoner (Ca2+) är kända för att ingå i flera intracellulära signalmekanismer. Ett intressant koncept inom detta fält är en signalerande mikrodomän där inositol 1,4,5-trifosfatreceptorn (IP3R) i endoplasmatiska nätverksmembranet (ER-membranet) fysiskt interagerar med proteiner i plasmamembranet. Denna mikrodomän har visats vara orsak till oscillationer i den intracellulära Ca2+-nivån. Den andra modellen i denna avhandling beskriver ett signalerande nätverk där både Ca2+-kanaler och pumpar bundna i ER-membranet och i plasmamembranet, däribland store-operated Ca2+(SOC)-kanaler, ingår. Ett MATLAB®-verktyg utvecklades för att implementera signalnätverket och simulera dess egenskaper. Denna modell implementerades även i Virtual cell.

Resultaten visar en stark likhet mellan den matematiska modellen och FRAP-datat i D1R-studien. Modellen visar en distinkt skillnad i återhämtningsegenskaper hos simulerade FRAP-experiment på hela dendriter och dendritiska spines, beroende på skillnader i geometri. Modellen kan även förklara infångning av D1R i dendritiska spines.

Resultaten från Ca2+-signaleringmodellen visar att stimulering av IP3R kan orsaka Ca2+-oscillationer inom samma frekvensområde som tidigare setts i experiment. Att ta bort SOC-kanaler från modellen kan ändra karaktär hos, såväl som den kvalitativa uppkomsten av Ca2+-oscillationer.

Bücher zum Thema "Mathematical models":

1

Fischer, Gerd, Hrsg. Mathematical Models. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-18865-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tanguy, Jean-Michel, Hrsg. Mathematical Models. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9781118557853.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ershov, I͡Uriĭ Leonidovich. Constructive models. New York: Consultants Bureau, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

R, Thompson James. Empirical model building: Data, models, and reality. 2. Aufl. Hoboken, N.J: John Wiley & Sons, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mayergoyz, I. D. Mathematical models of hysteresis. New York: Springer-Verlag, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Keynes), Open University (Milton. Mathematical models and methods: Mathematical modelling. Milton Keynes: Open University, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Torres, Pedro J. Mathematical Models with Singularities. Paris: Atlantis Press, 2015. http://dx.doi.org/10.2991/978-94-6239-106-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Borisov, Andrey Valerievich, und Anatoly Vlasovich Chigarev. Mathematical Models of Exoskeleton. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97733-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Stamova, Ivanka, und Gani Stamov. Applied Impulsive Mathematical Models. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28061-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mayergoyz, I. D. Mathematical Models of Hysteresis. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3028-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Mathematical models":

1

Holst, Niels. „Mathematical Models“. In Decision Support Systems for Weed Management, 3–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44402-0_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gross, Sven, und Arnold Reusken. „Mathematical models“. In Springer Series in Computational Mathematics, 33–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19686-7_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pulido-Bosch, Antonio. „Mathematical Models“. In Principles of Karst Hydrogeology, 195–240. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55370-8_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hinrichsen, Diederich, und Anthony J. Pritchard. „Mathematical Models“. In Mathematical Systems Theory I, 1–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26410-8_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Marquardt, Wolfgang, Jan Morbach, Andreas Wiesner und Aidong Yang. „Mathematical Models“. In OntoCAPE, 323–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04655-1_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mauergauz, Yuri. „Mathematical Models“. In Advanced Planning and Scheduling in Manufacturing and Supply Chains, 43–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27523-9_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Skiena, Steven S. „Mathematical Models“. In Texts in Computer Science, 201–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55444-0_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Thorn, Colin E. „Mathematical models“. In An Introduction to Theoretical Geomorphology, 193–212. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-010-9441-2_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Layer, Edward. „Mathematical Models“. In Modelling of Simplified Dynamical Systems, 3–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56098-9_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Payne, Stephen. „Mathematical Models“. In Cerebral Autoregulation, 39–56. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31784-7_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Mathematical models":

1

Morrow, Gregory J., und Wei-Shih Yang. „Probability Models in Mathematical Physics“. In Conference on Probability Models in Mathematical Physics. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814539852.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Weckesser, Markus, Malte Lochau, Michael Ries und Andy Schürr. „Mathematical Programming for Anomaly Analysis of Clafer Models“. In MODELS '18: ACM/IEEE 21th International Conference on Model Driven Engineering Languages and Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3239372.3239398.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Tweedie, Lisa, Robert Spence, Huw Dawkes und Hus Su. „Externalising abstract mathematical models“. In the SIGCHI conference. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/238386.238587.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Li, Yajun. „Mathematical models for diode laser beams“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.thr5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
It is known that there are two mathematical models for the elliptic beams generated by semi conductor laser diodes. The first model is the simple Gaussian model,1 in which two Gaussian distributions with different widths are employed to describe the light distribution over the elliptic cross-section of the beam. The second model is known as the Lorentzian-Gaussian model2 which was established in a study of the fact that the Gaussian distribution is valid only for the light field parallel to the junction and in the perpendicular direction the field is described by the Loretzian distribution. In this paper, numerical examples are presented to clarify which one of these two models fits the measurements better, and it is shown that the simple Gaussian model has a certain advantage over the Lorentzian-Gaussian model.
5

Maskal, Alan B., und Fatih Aydogan. „Mathematical Models of Spacer Grids“. In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60098.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The fuel rods in Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) cores are supported by spacer grids. Even though spacer grids add to the pressure loss in the reactor core, spacer grids have several benefits in Light Water Reactors (LWRs). Some of these benefits are: (i) increasing the turbulence at the bottom of the reactor core for better heat transfer in single phase region of the LWRs, (ii) improving the departure nucleate boiling ratio results for PWRs, and (iii) improving critical power ratio (CPR) values by increasing the thickness of film in annular flow regime in the top section of the reactor core of BWRs. Several mathematical models have been developed for single and two phase pressure loss across the grid spacer. Almost all of them significantly depend on Reynolds Number. Spacer designs have evolved (incorporating mixing vanes, springs, dimples, etc), resulting in the complexity of the analysis across the grid, all the models have been compared not only theoretically but also quantitatively. For the quantitative comparisons, this work compares the results of mathematical spacer models with experimental data of BWR Full Size Fine Mesh Bundle Tests (BFBT). The experimental data of BFBT provides very detailed experimental results for pressure drop by using several different boundary condition and detailed pressure drop measurements. Since one CT-scanner was used at the bundle exit and three X-ray densitometers were used for the chordal average void distribution at different elevations to generate the BFBT results, detailed two phase parameters have been measured in BFBT database. Two bundle types of BFBT, the current 8×8 type and the high burn-up 8×8 type, were simulated. Three combinations of radial and axial power shapes were tested: 1) beginning of cycle (BOC) radial power pattern/cosine axial power shape (the C2A pattern); 2) end of cycle (EOC) radial power pattern/cosine axial power shape (C2B pattern); and 3) beginning of cycle radial power pattern/inlet peaked axial power shape (C3 pattern) in BFBT. The pressure drop in BFBT database was measured in both single-phase flow and two-phase flow conditions that cover the normal operational behavior. BFBT database gives the three combinations of high burnup assemblies with different radial and axial power shapes, namely C2A, C2B and C3, which were utilized in the critical power measurements. There are two types of spacers in this program — ferrule type and grid type. Therefore, detailed experimental data of BFBT was used for analyzing mathematical models of spacer grid for various boundary conditions of BWR in this paper. It was observed and discussed that pressure drop values due to spacer models can be significantly different.
6

Chilbert, M., J. Myklebust, T. Prieto, T. Swiontek und A. Sances. „Mathematical models of electrical injury“. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.94632.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bogdanov, Yu I., A. Yu Chernyavskiy, A. S. Holevo, V. F. Lukichev und A. A. Orlikovsky. „Mathematical models of quantum noise“. In International Conference on Micro-and Nano-Electronics 2012, herausgegeben von Alexander A. Orlikovsky. SPIE, 2013. http://dx.doi.org/10.1117/12.2017396.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Nedostup, Leonid, Yuriy Bobalo, Myroslav Kiselychnyk und Oxana Lazko. „Production Systems Complex Mathematical Models“. In 2007 9th International Conference - The Experience of Designing and Applications of CAD Systems in Microelectronics. IEEE, 2007. http://dx.doi.org/10.1109/cadsm.2007.4297505.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sanjana, N., M. S. Deepthi, H. R. Shashidhara und Yajunath Kaliyath. „Comparison of Memristor Mathematical Models“. In 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER). IEEE, 2022. http://dx.doi.org/10.1109/discover55800.2022.9974669.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Dowding, Kevin. „Quantitative Validation of Mathematical Models“. In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24308.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Validation is a process to compare a mathematical model with a set of physical experiment to quantify the accuracy of the model to represent the physical world (experiment). Because the goal is to use experiments to quantify the accuracy of the mathematical model, the interaction of the model and experiment must be carefully studied. Advancing the comparison beyond a qualitative nature requires consideration of the errors in the process and the effect of these errors on the comparison. The mathematical model, in conjunction with sensitivity analysis, uncertainty analysis, and statistical analysis are tools for studying the interaction of the model and experiment and quantifying the effect of errors. A model for steady state heat conduction is used to discuss issues associated with the errors in the validation process and demonstrate a quantitative process to study validation of mathematical models.

Berichte der Organisationen zum Thema "Mathematical models":

1

Mayergoyz, I. D. [Mathematical models of hysteresis]. Office of Scientific and Technical Information (OSTI), Januar 1991. http://dx.doi.org/10.2172/6911694.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Mayergoyz, I. D. Mathematical models of hysteresis. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/6946876.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mayergoyz, I. Mathematical models of hysteresis. Office of Scientific and Technical Information (OSTI), August 1989. http://dx.doi.org/10.2172/5246564.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kaper, H. Mathematical models of superconductivity. Office of Scientific and Technical Information (OSTI), März 1991. http://dx.doi.org/10.2172/5907100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ringhofer, Christian. Mathematical Models for VLSI Device Simulation. Fort Belvoir, VA: Defense Technical Information Center, November 1987. http://dx.doi.org/10.21236/ada191125.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mayergoyz, Isaak. MATHEMATICAL MODELS OF HYSTERESIS (DYNAMIC PROBLEMS IN HYSTERESIS). Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/889747.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lovianova, Iryna V., Dmytro Ye Bobyliev und Aleksandr D. Uchitel. Cloud calculations within the optional course Optimization Problems for 10th-11th graders. [б. в.], September 2019. http://dx.doi.org/10.31812/123456789/3267.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The article deals with the problem of introducing cloud calculations into 10th-11th graders’ training to solve optimization problems in the context of the STEM-education concept. After analyzing existing programmes of optional courses on optimization problems, the programme of the optional course Optimization Problems has been developed and substantiated implying solution of problems by the cloud environment CoCalc. It is a routine calculating operation and not a mathematical model that is accentuated in the programme. It allows considering more problems which are close to reality without adapting the material while training 10th-11th graders. Besides, the mathematical apparatus of the course which is partially known to students as the knowledge acquired from such mathematics sections as the theory of probability, mathematical statistics, mathematical analysis and linear algebra is enough to master the suggested course. The developed course deals with a whole class of problems of conventional optimization which vary greatly. They can be associated with designing devices and technological processes, distributing limited resources and planning business functioning as well as with everyday problems of people. Devices, processes and situations to which a model of optimization problem is applied are called optimization problems. Optimization methods enable optimal solutions for mathematical models. The developed course is noted for building mathematical models and defining a method to be applied to finding an efficient solution.
8

Dawson, Steven. The Genesis of Cyberscience and its Mathematical Models (CYBERSCIENCE). Fort Belvoir, VA: Defense Technical Information Center, Februar 2005. http://dx.doi.org/10.21236/ada431570.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Steefel, C., D. Moulton, G. Pau, K. Lipnikov, J. Meza, P. Lichtner, T. Wolery et al. Mathematical Formulation Requirements and Specifications for the Process Models. Office of Scientific and Technical Information (OSTI), November 2010. http://dx.doi.org/10.2172/1000859.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gelenbe, Erol. Mathematical Models by Quality of Service Driven Routing in Networks. Fort Belvoir, VA: Defense Technical Information Center, Januar 2005. http://dx.doi.org/10.21236/ada436700.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie