Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Matériaux viscoélastiques – Propriétés mécaniques“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Matériaux viscoélastiques – Propriétés mécaniques" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Matériaux viscoélastiques – Propriétés mécaniques"
Gautier, R., C. Petit, V. Bolcato, E. Planus und F. Marchi. „Nouveaux travaux pratiques en nanotechnologies : étude nano-mécanique de micro/nano-objets mous/souples par AFM“. J3eA 18 (2019): 1004. http://dx.doi.org/10.1051/j3ea/20191004.
Der volle Inhalt der QuelleAdama, Gassama, Diouf Babacar, Ly Elhadji Babacar, Manga Moise und Ndiaye Diène. „Caractérisation des Propriétés Mécaniques et Thermiques de matériaux à base de Ciment, de Typha Domingénis et d’Argile“. Journal de Physique de la SOAPHYS 3, Nr. 2 (01.11.2023): 1–6. http://dx.doi.org/10.46411/jpsoaphys.2023.015.
Der volle Inhalt der QuelleKoadri, Zainate, Azzedine Benyahia, Nadir Deghfel, Kamel Belmokre, Brahim Nouibat und Ali Redjem. „Étude de l’effet du temps de traitement alcalin de fibres palmier sur le comportement mécanique des matériaux à base d’argile rouge de la région de M’sila“. Matériaux & Techniques 107, Nr. 4 (2019): 404. http://dx.doi.org/10.1051/mattech/2019031.
Der volle Inhalt der QuelleCastaing, J., und A. Dominguez Rodriguez. „Dislocations et propriétés mécaniques des matériaux céramiques : Quelques problèmes“. Journal de Physique III 5, Nr. 11 (November 1995): 1787–93. http://dx.doi.org/10.1051/jp3:1995225.
Der volle Inhalt der QuelleSerifou, Mamery Adama, Obre Sery Paul Jolissaint, Bleh Raoul Kouassi und Emeruwa Edjikémé. „Analyse physico-mécanique d’un composite paille de riz/ciment“. Matériaux & Techniques 108, Nr. 2 (2020): 208. http://dx.doi.org/10.1051/mattech/2020024.
Der volle Inhalt der QuelleBen Salk, S., E. Pallecchi, V. Hoel und H. Happy. „Croissance et caractérisation de graphène au Pôle CNFM de Lille“. J3eA 18 (2019): 1003. http://dx.doi.org/10.1051/j3ea/20191003.
Der volle Inhalt der QuelleKossman, Stephania, Didier Chicot und Alain Iost. „Indentation instrumentée multi-échelles appliquée à l’étude des matériaux massifs métalliques“. Matériaux & Techniques 105, Nr. 1 (2017): 104. http://dx.doi.org/10.1051/mattech/2017007.
Der volle Inhalt der QuelleSauret, Alban, Guillaume Saingier und Pierre Jop. „Érosion et accrétion de matériaux granulaires humides“. Reflets de la physique, Nr. 64 (Januar 2020): 17–22. http://dx.doi.org/10.1051/refdp/202064017.
Der volle Inhalt der QuelleBasire, Charlotte, und Christian Frétigny. „Etude locale des propriétés d'adhésion de matériaux viscoélastiques avec un microscope à force atomique“. Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy 325, Nr. 4 (August 1997): 211–20. http://dx.doi.org/10.1016/s1251-8069(97)88280-2.
Der volle Inhalt der QuelleDjoudi, Tarek, Mabrouk Hecini, Daniel Scida, Youcef Djebloun und Belhi Guerira. „Caractérisation physique et mécanique du bois et des fibres issus d’une palme mûre de palmier dattier“. Matériaux & Techniques 106, Nr. 4 (2018): 403. http://dx.doi.org/10.1051/mattech/2018056.
Der volle Inhalt der QuelleDissertationen zum Thema "Matériaux viscoélastiques – Propriétés mécaniques"
Brun, Arnaud. „Evaluation des propriétés de matériaux viscoélastiques par barres de Kolsky“. Bordeaux 1, 2000. http://www.theses.fr/2000BOR12276.
Der volle Inhalt der QuelleMichel, Eric. „Propriétés dynamiques des réseaux transitoires : diffusion de lumière et rhéologie“. Montpellier 2, 2001. http://www.theses.fr/2001MON20110.
Der volle Inhalt der QuelleYakimets-Pilot, Iryna. „Elaboration d'un modèle viscoélastique et son application au comportement d'un polypropylène sous sollicitations mécaniques complexes et physico-chimiques“. Compiègne, 2004. http://www.theses.fr/2004COMP1504.
Der volle Inhalt der QuelleThis work is devoted to a viscoelastic model developed for a semi-crystalline polymer with small strains. This model is based on a rheological approach and contains one spring, which is associated with the crystalline phase, and two Maxwell elements, which are associated with the amorphous phase with reduced mobility (interphase) and the free amorphous phase. A particular mechanism of de formation of two amorphous phases was integrated in this model, which satisfactory simulates the evolution of the viscoelasticity under various solicitations. The polypropylene was used in this study like a model-material. This viscoelastic model was then generalized in 3D for modelling the behaviour under complex mechanical solicitations: particularly proportional and no proportional traction-compression-torsion tests were simulated. The mechanical behaviour under physicochemical solicitations of photo-oxidation ageing type was also analysed thanks to this model
Dubois, Frédéric. „Modélisation du comportement mécanique des milieux viscoélastiques fissurés : application au matériau bois“. Limoges, 1997. http://www.theses.fr/1997LIMO0005.
Der volle Inhalt der QuelleDupuy, Jean-Sébastien. „Identification des propriétés mécaniques de matériaux composites par analyse vibratoire“. Phd thesis, Montpellier 2, 2008. http://www.theses.fr/2008MON20200.
Der volle Inhalt der QuelleThe mechanical performance of composites depends not only on the characteristics of fillers and matrix used, but also on the quality of interface between these constituents. Thus, poor interfacial adhesion generally results in a decrease of the behavior of composite, which may be likened to an overall damage of the material. The purpose of this study is to propose a means of quick characterization of materials damage from mechanical vibrations analyses. Indeed, bad cohesion within thematerial can lead to friction phenomena, which tend to increase the damping level of its dynamic response. Several experimental techniques, some of which based on the analysis of the structural resonant frequencies, are presented in this study. The viscoelastic properties of particulate composites with polymer matrix are analyzed. Some design parameters of these model materials have been tuned, in order to create different damage levels. The results, particularly in regard to the loss factor, are interpreted from a comparison with simple analytical homogenization models
Dupuy, Jean-Sébastien. „Identification des propriétés mécaniques de matériaux composites par analyse vibratoire“. Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2008. http://tel.archives-ouvertes.fr/tel-00383234.
Der volle Inhalt der QuelleKomar, Wieslaw. „Relations constitutives viscoélastiques pour des tissus techniques“. Lille 1, 2007. https://pepite-depot.univ-lille.fr/RESTREINT/Th_Num/2007/50376-2007-159.pdf.
Der volle Inhalt der QuelleLedi, Koffi Sénanou. „Approche inverse pour l’identification des propriétés viscoélastiques de structures sandwichs amorties“. Electronic Thesis or Diss., Université de Lorraine, 2018. http://www.theses.fr/2018LORR0250.
Der volle Inhalt der QuelleIn this work, a inverse identification method of the mechanical properties of the viscoelastic material (shear modulus and loss factor) functionalized in a sandwich structure with three symmetrical layers is proposed. The objective of this work is to be able to identify the mechanical properties in situ. Through a finite element model based on Rao's Zig-Zag model, our model ensures the modal parameter determination of the sandwich beam. The inverse approach consists of an iterative procedure that determines the mode shapes given the material parameters and then calculates the viscoelastic properties from the modes using a Rayleigh quotient until convergence on the properties of the material is satisfied. The input parameters of the inverse model are the resonance frequencies and loss factors of the sandwich beam obtained experimentally. As a result, the frequency dependence of the viscoelastic properties of the sandwich beam is determined by an automated way. The method has been successfully compared to Ross-Kerwin-Ungar formulas; a standard optimization approach and the literature. From the results, we have been able to deduce the constitutive laws of the viscoelastic heart according to rheological models such as the generalized Maxwell model, ADF, GHM and fractional Zener. This experimental device coupled to the method of identification allowed the investigation of modal parameters of the beam at different temperatures to study the effect of the temperature on the rheological laws. To study the robustness of our method, we carried out tests repeatability, reproducibility on a sample population. Since the effectiveness of our method has been proven, a sensitivity study has been carried out on the geometrical characteristics of our structure and the input parameters. The results obtained show the strong impact of certain parameters on identification
Berruet, Régis Gilles. „Utilisation de composites polyépoxyde-carbone comme biomatériaux : biocompatibilité et biofonctionnalité du système“. Lyon 1, 1987. http://www.theses.fr/1987LYO10108.
Der volle Inhalt der QuelleFayolle, Caroline. „Influence de la dispersion de la silice sur les propriétés viscoélastiques et mécaniques des élastomères renforcés“. Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10059/document.
Der volle Inhalt der QuelleFilled elastomers are used in tread tires. It has been demonstrated that most of rolling resistance of tires is due to filled elastomer energy dissipation. In that way, understanding viscoelastic properties of these materials is a key point. Then, filled elastomer behavior at high deformations may be involved in ultimate properties of tire application such as fatigue crack propagation and wear. The aim of this work is to study the impact of silica dispersion on viscoelastic and mechanical properties of filled elastomers. First, levers impacting silica dispersion are evaluated. Dispersion of fillers can be considered as a competition between fillers cohesion forces and applied forces to the system to break them, these parameters have been studied methodically. Finally, the impact of silica-matrix interactions is studied, changing silica surface treatments or elastomer natures. The quantity of interactions possible per polymer chain between the silica and the elastomer may play a role in silica dispersion. Secondly, the impact of silica dispersion on viscoelastic and mechanical properties is discussed. It is shown than increasing silica dispersion leads to a decrease of linear elastic modulus and an increase of reinforcement in tensile at high deformations. Finally, regarding ultimate properties, our experimental device on the selected formulations has not shown any impact of silica dispersion on fatigue crack propagation. Nevertheless, we observe a better wear resistance with increasing dispersion, despite the lower materials hardness
Bücher zum Thema "Matériaux viscoélastiques – Propriétés mécaniques"
Berthelot, J. M. Matériaux composites: Comportement mécanique et analyse des structures. Paris: Masson, 1992.
Den vollen Inhalt der Quelle findenDoubrère, Jean-Claude. Résistance des matériaux: Cours et exercices corrigés. Paris: Eyrolles, 2010.
Den vollen Inhalt der Quelle findenC, Cranmer David, und Richerson David W. 1944-, Hrsg. Mechanical testing methodology for ceramic design and reliability. New York: Marcel Dekker, 1998.
Den vollen Inhalt der Quelle findenHosford, William F. Mechanical behavior of materials. 2. Aufl. New York: Cambridge University Press, 2010.
Den vollen Inhalt der Quelle findenSaid, Jahanmir, Hrsg. Friction and wear of ceramics. New York: M. Dekker, 1994.
Den vollen Inhalt der Quelle findenClaude, Bathias, und Pineau A, Hrsg. Fatigue of materials and structures. Hoboken, NJ: ISTE/John Wiley, 2010.
Den vollen Inhalt der Quelle findenK, Kalpakides Vassilios, Maugin G. A. 1944- und Conference on EUROMECH Solid Mechanics (5th : 2003 : thessaloniki, Greece), Hrsg. Configurational mechanics: Proceedings of the Configurational Mechanics Symposium : held within the 5th EUROMECH Solid Mechanics Conference : 17-22 August, 2003, Thessaloniki, Greece. Leiden: A.A. Balkema, 2004.
Den vollen Inhalt der Quelle findenMenard, Kevin P. Dynamic Mechanical Analysis. London: Taylor and Francis, 2008.
Den vollen Inhalt der Quelle findenKausch, Hans-Henning, Nicole Heymans, Pierre Decroly und Christopher John Plummer. Traité des matériaux, numéro 14 - Matériaux polymères : Propriétés mécaniques et physiques. Presses Polytechniques et, 2001.
Den vollen Inhalt der Quelle findenMechanical Properties of Engineered Materials. New York: Marcel Dekker, Inc., 2003.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Matériaux viscoélastiques – Propriétés mécaniques"
PAREIGE, Philippe, und Christophe DOMAIN. „Les alliages métalliques“. In Les matériaux du nucléaire sous irradiation, 51–90. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9148.ch2.
Der volle Inhalt der QuelleALLION-MAURER, Audrey. „Métaux et alliages dans les environnements alimentaires“. In Contrôle et prévention des risques biologiques associés à la contamination des aliments, 71–86. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9125.ch4.
Der volle Inhalt der QuelleLEHUÉDÉ, Patrice. „Généralités“. In Le plomb dans les matériaux vitreux du patrimoine, 9–24. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9076.ch1.
Der volle Inhalt der QuelleBÉRERD, Nicolas, und Laurent PETIT. „Le graphite nucléaire“. In Les matériaux du nucléaire sous irradiation, 129–54. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9148.ch4.
Der volle Inhalt der QuelleDEBEAUFORT, Frédéric. „Papiers et cartons“. In Matériaux et procédés d’emballage pour les industries alimentaires, cosmétiques et pharmaceutiques, 41–67. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9039.ch2.
Der volle Inhalt der QuelleEtienne, Serge, und Laurent David. „Chapitre 9. Propriétés mécaniques ultimes des matériaux polymères à l’état solide“. In Introduction à la physique des polymères, 297–350. Dunod, 2012. http://dx.doi.org/10.3917/dunod.etien.2012.01.0297.
Der volle Inhalt der Quelle