Dissertationen zum Thema „Matériaux semiconducteurs organiques“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-45 Dissertationen für die Forschung zum Thema "Matériaux semiconducteurs organiques" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Gao, Xue. „Injection de spin dans les semiconducteurs et les matériaux organiques“. Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0059/document.
Der volle Inhalt der QuelleSpintronics with semiconductors is very attractive as it can combine the potential of semiconductors with the potential of the magnetic materials. GaN has a long spin relaxation time, which could be of potential interest for spintronics applications. Organic spintronics is also very appealing because of the long spin lifetime of charge carriers in addition to their relatively low cost, flexibility, and chemical diversity. In this thesis, we investigate spin injection in spin LEDs containing either InAs/GaAs quantum dots or InGaN/GaN quantum wells. Moreover, we further study spin polarized transport in organic multiferroic tunnel junctions (OMFTJs). Firstly, we will show that the circular polarization of the light emitted by a LED containing a single layer of p-doped InAs/GaAs quantum dots (QDs) can reach about 18% under zero applied magnetic field. A clear correlation is established between the polarization degree of the emitted light and the perpendicular magnetization of the injector layer. The polarization reaches a maximum for an applied bias of 2.5V at 10K, which corresponds to an injected current of 6 µA. Also, we report a remarkable behavior of the polarization in the temperature region 60-80K. The interpretation of the bias and temperature dependence of the polarization is discussed in light of the competition between radiative recombination time τr and the spin relaxation time τs. In addition, significant efforts have been devoted to developing a perpendicular spin injector on GaN based materials to achieve spin injection without applying a magnetic field. Firstly, the growth of MgO has been investigated at various growth temperatures. Then, we studied the growth of either Fe or Co on MgO/GaN. In contrast to Fe/MgO, the Co/MgO spin injector yields a clear perpendicular magnetic anisotropy. In addition, ab-initio calculations have been performed to understand the origin of the perpendicular magnetic anisotropy at the Co/MgO(111) interface. Finally, we investigate multiferroic tunnel junctions (MFTJs) based on organic PVDF barriers doped with Fe3O4 nano particles. The organic MFTJs have recently attracted much attention since they can combine advantages of spintronics, organic and ferroelectric electronics. We report on the successful fabrication of La0.6Sr0.4MnO3/PVDF:Fe3O4/Co OMFTJ, where the poly(vinylidene fluoride) (PVDF) organic barrier has been doped with ferromagnetic Fe3O4 nanoparticles. By changing the polarization of the ferroelectric PVDF, the tunneling process in OMFTJ can be switched either through the LSMO/PVDF/Co part (positive polarization) or through the Fe3O4/PVDF/Co part (negative polarization). This corresponds to a reversal of tunneling magnetoresistance (TMR) from +10% to -50%, respectively. Our study shows that the doping of OMFTJs with magnetic nanoparticles can create new functionalities of organic spintronic devices by the interplay of nanoparticle magnetism with the ferroelectricity of the organic barrier
Rodriguez, Fernand. „Synthèse de nouveaux matériaux conjugués pour l'électronique organique : fabrication et études des performances de transistors organiques et de diodes electroluminescentes“. Paris 7, 2007. http://www.theses.fr/2007PA077204.
Der volle Inhalt der QuelleThis thesis describes the synthesis and characterization of new conjugated materials for organic electronics. In the first part of this work we have developed an original approach to elaborating organic field-effect transistors based on a SAM consisting of bifunctional molecules containing a short alkyl chain linked to an oligothiophene moiety that acts as the active semiconductor. The SAM was deposited on a thin AI2O3 oxide layer that serves as a gate insulator. The SAMs have been characterized by polarization-modulated IR reflection-absorption spectroscopy (PMIRRAS) and AFM. Devices with well defined I/V curves have been obtained with a clear saturation allowing an estimate of the mobility: 3. 5. 1CT ¯³ cm²/W. S. The second part deals with development of new organometallic complexes based on oligothiophene- substituted 8-hydroxyquinoline for organic electroluminescence applications. Lithium and aluminium complexes have been synthesized and characterized. The OLED structures have been optimized by a careful choice of the hole-transporting layers, metal cathodes and the thickness of the emissive layer. The results show that some of the lithium complexes present better performances than the reference material AIQ3 with a lower onset voltage or a higher yield
Derouiche, Hassen. „Étude de couches minces de matériaux organiques et applications à la réalisation de cellules solaires“. Nantes, 2004. http://www.theses.fr/2004NANT2025.
Der volle Inhalt der QuelleMasenelli, Bruno. „Elaboration et caractérisation de microcavités optiques à base de semiconducteurs organiques“. Ecully, Ecole centrale de Lyon, 1999. http://www.theses.fr/1999ECDL0035.
Der volle Inhalt der QuelleFabrication and characterisation of organic semiconductor based optical microcavities For about ten years, new optoelectronic devices have developed, exploiting the luminescence of conjugated organic materials. However, drastic criteria, concerning radiated intensity and lifetime, must be met. That is the reason why research progresses on three main axes. The first one consists in the synthesis of new materials. The second deals with the optimisation of charge injection and transport in the structures. The third one, on which we focused, consists in controlling the optical properties via light confirming structures. First, we determined the optical properties (optical indices, photoluminescent spectrum) of tri (8- hydroxyquinoline) aluminium (Alq3). We used this material as the active layer in the fabrication of planar optical microcavities. We showed that it is possible to fabricate Bragg mirrors without deteriorating the organic layer. Using angular resolved photoluminescence experiments, we demonstrated that a microcavity concentrates monochromatic emission into lobes. This concentration leads to an intensity enhancement in the lobe direction. This study demonstrates the importance of emitting layer position in the cavity. We observed an intensity enhancement along the normal direction of more than six times between a cavity with its active layer near a maximum of the electrical field and a cavity with its active layer near a node of the field. We modelled the results and calculated that the total spontaneous emission rate is not affected by the cavity. Finally, we fabricated microcavities confined along two perpendicular directions. Metallic lateral mirrors were made by photolithography. Measures showed that the electric field does not experience the lateral confinement, indicating that the distance between lateral mirrors, set by the fabrication technique remains large compared to the wavelength. While these structures behave quite similarly to planar microcavities, we observed that, in the section plane, the variation of the resonant wavelength with the angle does not correspond to that of a planar microcavity. This result is discussed and we propose an explanation for it
El, Beqqali Omar. „Propriétés électriques et diffusion d'impuretés dans des matériaux organiques : application à l'électronique moléculaire“. Lyon 1, 1990. http://www.theses.fr/1990LYO10116.
Der volle Inhalt der QuelleGuillermet, Olivier. „Etude de films ultra-minces de PTCDI et Pd(Pc) déposés sur les surfaces Pt(001), Pt(111) et Au(001) : application à l'hétérostructure métal/PTCDI/Pd(Pc)/métal“. Aix-Marseille 2, 2006. http://theses.univ-amu.fr.lama.univ-amu.fr/2006AIX22042.pdf.
Der volle Inhalt der QuelleBaltagi, Youssef. „Spectroscopis de modulation optique : développement d'un ensemble expérimental et application à la caractérisation de matériaux et d'hétérostructures du système GaInAs/AIInAs épitaxié sur InP“. Lyon, INSA, 1995. http://www.theses.fr/1995ISAL0096.
Der volle Inhalt der QuelleIn this work, we study using modulation spectroscopy the optical properties of III-V semiconductor compounds, especially InAlAs / InGaAs based structures. The first part of the work deals with the development of an experimental set up, whose sensitivity is 10-6. This system works between 8K and 600K, in the spectral range 0. 6 to-1. 8 micrometer. In this part we also show the feasibility of a performing prototype. The second part deals with the characterization of bulk InAlAs / InP layers. Using the temperature dependence of the Photore-flectance (PR) spectra we show the existence of a localization in the InAlAs layer due to some clustering effect. Furthennore, we have studied InGaAs/InAlAs single quantum wells. The PR technique is shown to be a powerful tool to characterize the interface and material quality, interface roughness…, and to give a qualitative determination of conduction band offset in this system. In the last part of this work, we apply the PR in order to measure the surface Fermi level in an InAlAs UN+ ( undoped layer grown on a heavily doped n+ layer) structure. The same structures have been used to measure the piezoelectric field in a InGaAs/GaAs strained SQW grown on a polar <111> GaAs substrate
Carcel, Carole. „Synthèse d'oligoTTF à lien saturé, fonctionnalisé et conjugué : Caractérisation électrochimique et formation de matériaux“. Montpellier 2, 2001. http://www.theses.fr/2001MON20163.
Der volle Inhalt der QuellePerrin, Lara. „Synthèse et caractérisation de matériaux organiques dérivés du pérylène pour la conversion photovoltai͏̈que“. Angers, 2003. http://www.theses.fr/2003ANGE0016.
Der volle Inhalt der QuelleIncreasing interest in finding new renewable energy sources has lead scientists to search for less expensive and more effective solar cells. Organic materials seem to be an alternative to replace inorganic silicon solar cells: new "plastic" photovoltaic devices are inexpensive and relatively easy to process. The main goal in this field is to produce thermally and photochemically stable organic semiconductors. The aim of this thesis is to develop new "n type" semiconductors (electron acceptors) derived from organic pigments used in xerography and automobile paints. The work presented concerns the synthesis and characterization of soluble derivatives of perylene-3,4:9,10-tetracarboxylic diimides that could be used as acceptors in photovoltaic cells
Nos, Melodie. „Synthèse organique et auto-assemblage de métallo-polymères conjugués à faible gap pour la préparation de nouveaux matériaux organiques“. Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC259/document.
Der volle Inhalt der QuelleThis work is focused on the development of original low band gap metallo-polymers to generate potential candidates for solar cell devices. In order to decrease the band gap value of the metallo-polymers, the first part of this work explores the insertion of one or two charge transfer complexes (CTC) in the ligand structure, using diketopyrrolopyrrole (DPP) as acceptor and thiophene as donor in order to decrease the band gap. The second part of this work is interested in the improvement of charge carrier mobility. The development of strategies to promote chains self-organization in the material with the introduction of an organizing group on the ligand are studied in order to generate a π-type weak interactions network or hydrogen bonds. The targeted metallo-polymers are obtained using a dehydrohalogenation reaction between a dialkyne ligand and a platinium (II) complex. Electronic, optic and physic properties characterization of these original compounds confirm the interest for using them in organic solar cell devices
Jeux, Victorien. „Systèmes conjugués moléculaires à base de Triarylamines et d'analogues thiophéniques du Spirobi(fluorène) : de la synthèse aux matériaux“. Phd thesis, Université d'Angers, 2013. http://tel.archives-ouvertes.fr/tel-01010088.
Der volle Inhalt der QuelleGueye, Magatte. „Propriétés électriques, optoélectroniques et thermoélectriques de matériaux à base de poly (3,4-éthylènedioxythiophène)PEDOT“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI123/document.
Der volle Inhalt der QuelleWith the rising demand of flexible, low cost and environmentally friendly materials for future technologies, organic materials are becoming an interesting alternative to already existing inorganic ones. Organic photovoltaics, organic light emitting diodes, organic field effect transistors, organic thermoelectricity, organic transparent electrodes are all evidences of how organic materials are sought for tomorrow. Materials which can fulfill the requirements specifications of future technologies are conducting polymers, which owe their popularity to their outstanding electrical, optoelectronic, thermochromic, lighting and mechanical properties. Moreover, they exhibit good processability even on flexible substrates and low environmental impact. Poly(3,4-ethylenedioxythiophene) (PEDOT) is certainly the most known and most used conducting polymer because it is commercially available and shows great potential for organic electronics. Studies dedicated to PEDOT films have led to high conductivity enhancements. However, an exhaustive understanding of the mechanisms governing such enhancement is still lacking, hindered by the semi-crystalline nature of the material itself. In such a context, this thesis has four objectives which are (1) the synthesis of PEDOT materials with an optimized and controlled structure to enhance the electrical properties, (2) the thorough characterization of the as-synthesized PEDOT in order to understand the charge transport mechanisms, (3) the study of their thermoelectric properties and (4) the study of their stability under different environments and stresses. Thus, after a literature review on PEDOT materials, we present the enhancement of the electrical conductivity of PEDOT:OTf and PEDOT:Sulf up to 5400 S cm-1 via a structure and dopant engineering, and then thoroughly study their electrical and electronic transport properties. Subsequently, two thermoelectric properties of PEDOT are investigated, namely its resistive Joule heating ability and its Seebeck effect, for both heating and energy harvesting applications. A novel application of PEDOT as flexible transparent heater is demonstrated in the first case. PEDOT:Sulf for example exhibited a sheet resistance of 57 Ω sq-1 at 87.8 % transmittance and reached a steady state temperature of 138 °C under 12 V bias. Finally, this thesis is concluded with the ageing and stability of our PEDOT based materials under different environmental stresses. While PEDOT is stable under mild conditions, heavy degradations can occur under harsh conditions. The degradation mechanisms are then investigated in this last part
Pagoaga, Bernard. „Synthèse de nouveaux matériaux semi-conducteurs dérivés du pérylène pour l'électronique organique“. Thesis, Reims, 2012. http://www.theses.fr/2012REIMS020/document.
Der volle Inhalt der QuelleThis study deals with the synthesis of perylene-3,4:9,10-tetracarboxylic acid bisimide derivatives and their use as semi-conductors for organic electronics, and more specifically for the realization of organic field-effect transistors. The goals of this study are the synthesis of perylene derivatives, using halogenation reactions or Suzuki-Miyaura coupling, and the fabrication of organic field-effect transistors.In the first part of the work, a wide variety of perylene derivatives has been obtained and fully characterized. Spectroscopic and electrochemical studies have been performed to determine energy levels of the frontier orbitals.In the second part, the making of organic field-effect transistors was realized, beginning with the research of optimal conditions for ink formulation, deposition and annealing of the film. Then those devices have been characterized by measuring the source-drain current.Keywords: semi-conductor, perylene, organic field-effect transistor, Suzuki-Miyaura coupling, ink jet printing
Drolet, Nicolas. „Étude de dispositifs électro-optiques à base de matériaux dérivés de l'unité 2,7-carbazole“. Thesis, Université Laval, 2006. http://www.theses.ulaval.ca/2006/23878/23878.pdf.
Der volle Inhalt der QuelleCloitre, Thierry. „Elaboration par MOVPE des matériaux semiconducteurs II-VI grand gap ZnSe et ZnTe : application à la croissance des superréseaux ZnSe/ZnTe“. Montpellier 2, 1992. http://www.theses.fr/1992MON20072.
Der volle Inhalt der QuelleBulut, Ibrahim. „Synthèse et caractérisation de matériaux semi-conducteurs pour la conversion photovoltaïque“. Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAE005/document.
Der volle Inhalt der QuelleThe aim of this thesis is to develop efficient semi-conducting organic materials for organic photovoltaics. This work is focuses on the optimization of electron-donor organic semiconductors for the preparation of bulk heterojunction devices, in blend with a fullerene derivative used as electron-acceptor material. More specifically, it is to perform a systematic optimization study of two reference families (macromolecular and molecular respectively) from the laboratory, which have already led to interesting photovoltaic performances. For this, we followed a structured and systematic approach targeting the most relevant chemical parameters to be varied. To determine the properties of new materials synthesized, spectroscopic, electrochemical, structural, charge transport and photovoltaic characterizations were systematically made
Gamoudi, Maxime. „Détermination par courants thermostimulés et mesures en très basses fréquences et basses fréquences des propriétés électriques de matériaux moléculaires“. Lyon 1, 1986. http://www.theses.fr/1986LYO19015.
Der volle Inhalt der QuelleHartmann, Lucia. „Elaboration et étude de matériaux hybrides orientés et nanostructurés d'intérêt pour l'électronique organique“. Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00819804.
Der volle Inhalt der QuelleSchweicher, Guillaume. „Alignment of organic semiconductors in a thermal gradient“. Doctoral thesis, Universite Libre de Bruxelles, 2012. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209584.
Der volle Inhalt der QuelleIn order to validate these results, we embarked on an exploratory study of the crystallization of a set of organic semiconductors, carefully selected based on rational arguments, to evaluate the potential of the thermal gradient process as well as the required parameters for an OSC to perform adequately in this treatment. As in the case of terthiophene, nucleation and growth can be decoupled for the other organic semiconductors depending on their rate of growth. Furthermore, we have been able to reproduce on another polymorphic compound the selective growth of a single polymorphic form by applying adequate gradient conditions. We have also observed that compounds tend to orient preferentially along one of their major morphological planes parallel to the substrate, indicating a heterogeneous nucleation mechanism. A careful comparison between the different samples allowed us to confirm and complete our growth mechanism proposition. Based on the undercooling, maximal growth rate, primary and secondary nucleation rates of the compound, geometry of the system and adequate gradient parameters, a preferential alignment of the crystals along the thermal gradient direction can be achieved. Finally, we showed through this investigation and careful comparison that 2,7-didodecyl[1]benzothieno[3,2-b][1]benzothiophene possesses all the characteristics to be an excellent material candidate for the thermal gradient processing: low primary nucleation rate, moderate undercooling, high growth rate, platelet-like crystal growth morphology and liquid crystal phase allowing preorganization of the compound before crystallization and processing on single substrates without dewetting. Moreover, this compound is currently one of the best solution processable organic semiconductors.
We then investigated the directional crystallization of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene directly from its liquid crystal phase as a function of thermal gradient parameters (magnitude of the gradient, sample velocity) and film thicknesses in thin film geometry (spin-coated films). Again, decoupling of the nucleation and growth has been observed for crystallization processed directly from the liquid crystal phase leading to the generation of highly textured films presenting uniaxial in-plane alignments of the crystallites. Moreover, secondary nucleation spots highlighted by POM in the alignment region give a clue to elucidate the alignment mechanism. The unit cell orients with the reciprocal vector c* normal to the substrate. Moreover, POM observation tends to indicate systematic thermal cracks orientations for higher rates of displacement (25 μm.s-1) as well as a reduction of the number of domains present in the sample, suggesting a preferential alignment of the crystallites at higher rates of displacement. All our results indicate that an optimum of the quality of the aligned film is reached for thermal gradient conditions of 120 °C - 90 °C - 25 μm.s-1.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Delaunay, Wylliam. „Synthèse et caractérisation de nouveaux matériaux organophosphorés pour des applications en optoélectronique“. Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00942602.
Der volle Inhalt der QuellePereira, Marco. „Etude des propriétés électromécaniques de semi-conducteurs organiques“. Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0271/document.
Der volle Inhalt der QuelleThe public mind is aware of electronics drawbacks, the costs of development and production are important and the environmental impact can be denied. In order to solve those downsides, the organic electronics is studied and developed. This electronics have been introduced with the discovery of conductive polymers by the Nobel prices of chemistry from the year 2000, Alan J. Heeger, Alan G. MacDiarmid et Hideki Shirakawa. Since then, this technology has been widely developed and nowadays OLED (Organic Light Emitting Diode) screens as well as others devices like MEMS (Micro ElectroMechanical System), systems connecting electronics and mechanics, are commercialized. Those organic MEMS are more and more studied and developed due to a better flexibility of the organic semiconductors compared to the inorganic ones. However, even if the research on the polymer mechanics and semiconductor electronics is advanced, the electromechanical interaction of the organic semiconductors is poorly studied. Nevertheless, it is necessary to understand this interaction in order to develop the flexible electronics of tomorrow. Thus, this work has been focused on investigating the electromechanical interaction inside the organic semiconductors and developing tools/methods usable to study with ease new molecules. To better understand the electromechanical interaction between molecular structure and electrical response, the semiconductors are shaped into single crystals, in order to study a perfect molecular layout, without imperfections, in the three space dimensions. Hence, in the first instance, the influence of the molecular structure on the charge mobility was studied on rubrene. Even if is commonly assumed that the variation of the intermolecular distance causes the mobility changes inside rubrene, it turns out that this electrical variation is due to a reorganization of the molecules and variations of multiples inter/intramolecular parameters which modify the electronic coupling. In the second instance, the electromechanical response of air-gap transistors based on rubrene has been studied. In this more complicated systems, multiple parameters variate during the deflection. With the use of Gauge factor, it is possible to prove that the electromechanical response of those systems depends mainly on the mechanical and electrical modification of the interface electrodes/semiconductor. The high improvement of the electrical response of those air-gap transistors has been used to fabricate pressure sensors capable to detect forces as small as 230 nN. Finally, the methods developed during the previous works have been used to start the synthesis and characterization of hybrid perovskite transistors in order to study the electromechanical interaction of those emerging materials
Li, Qian. „Organic Semiconductors Based on Triazastarphene Towards 3D : Charge Transport in Crystalline Phase“. Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0144.
Der volle Inhalt der QuelleThe research in organic electronics has attracted worldwide attention due to the specific properties of organic materials such as lightness, flexibility, large scale processing ability and low production cost. Compared with inorganic materials, the strong anisotropy and low charge carrier transport mobility limit their integrations in commercial devices. This research aims at developing molecule systems leading to three-dimensional charge transport.To reach this goal, our design strategy is to expand the generally linear-shaped molecular structure into star-shaped structure with C3h symmetry. The designed molecules consist of a planar core of fused aromatic cycles to form efficient - stacking with neighboring molecules and of bulky groups located close to the center to increase the solubility of the materials and prevent 1D columnar packing. Thus, two supramolecular arrangements are speculated (arm and column packing) where charge hopping follows pathways in 3D.Based on this design, 13 triazastarphenes substituted directly by amine or phenyl groups were synthesized and thoroughly characterized. Their electronic properties were carefully determined by UV-visible absorption spectroscopy, cyclic voltammetry and DFT calculations. Results from single crystal XRD showed that the experimental packing is similar to model for few molecules. In detail, one amino-triazastarphene has shown a new 2D layer by layer packing motif, while benzo-triazastarphenes have led to column packing in one case and half arm packing for another as expected. In addition, theoretical approach highlighted 2D and 3D dimensionality for charge carrier transport for the two later examples in the crystal phase.Finally, this work is the first report about straightforward synthesis of extended C3h acridine derivatives. Even though the performances obtained from the devices (OFETs and perovskite solar cells) based on these materials did not reach state of the art performances, the novel synthetic method and the achievement of interesting molecular arrangement motifs in single crystal can contribute to the development of high-performance OSCs
Liu, Dizheng. „New pi-conjugated polymers for organic electronics : synthesis and study of materials designed for OFET and/or OLED applications“. Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS206.pdf.
Der volle Inhalt der QuelleThis PhD thesis aims at the design, the synthesis and the characterization of new π-conjugated polymers for OFET or OLED applications. More precisely, the first objective is to prepare two side chain liquid crystalline π-conjugated polymers, namely Polythiophene-oxa and PBTTT-Tri, which can self-organize to ordered nanostructures and exhibit p-type conduction. The second objective is to explore 2 families of novel D-A polymers expected to exhibit TADF feature: one family includes two linear TADF polymers (S1, S2) based on a carbazole- or acridan-based donor backbone and acceptor moieties (such as dicyano-benzene or cyano-pyrimidine) as side groups. The other family includes two new series of vinyl polymers (S3, S4) based on through-space conjugation between the same donor and acceptor units as those used in the first family. The photophysical properties in both solution and solid state have been performed to determine if they are TADF or not
Schlierf, Andrea. „Graphene organic hybrid materials“. Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAF050/document.
Der volle Inhalt der QuelleIn 2004, carbon, the basis of all known life on earth, has surprised once again: Researchers from University of Manchester, UK, extracted a completely new carbon material, graphene, from a piece of graphite such as is found in pencils. Using adhesive tape, they obtained a flake of carbon with a thickness of just one single atom, at a time when many believed it impossible for such thin crystalline materials to be stable. Pristine graphene is a mono-atomic sheet of, sp2 hybridized carbon atoms arranged in a honeycomb network; this particular chemical structure gives rise to its outstanding physical and chemical properties. Graphene rapidly became the most intensively studied among the ‘possibly revolutionary’carbon materials, with its potential applications reaching from microelectronics to composites, from renewable energy to medicine. In 2010, Geim and Novoselov were honored with the Nobel Prize in Physics for their “ground breaking experiments regarding the two-dimensional material graphene” that started a new era in the science of carbon materials.In this thesis we exploit and study the non-covalent chemistry of graphene to design, produce, process and characterize novel graphene organic hybrid materials. The scope of this work covers mechanistic aspects of graphene liquid phase exfoliation with dyes, fundamental aspects of graphene chromophore interactions in liquid and solid phase and the formulation of graphene hybrid suspensions towards application in organic electronics and functional polymer composite materials
Biniek, Laure. „Polymères semi-conducteurs à faible largeur de bande interdite : de la synthèse au dispositif photovoltaïque organique“. Strasbourg, 2010. https://publication-theses.unistra.fr/public/theses_doctorat/2010/BINIEK_Laure_2010.pdf.
Der volle Inhalt der QuelleIn the field of organic photovoltaic, conjugated electron donor polymers with improved optoelectronic properties are highly needed. Therefore, that research work is focused on the design and investigation of a new family of donor-acceptor alternating low band-gap copolymers, using 2,1,3-benzothiadiazole as electron-deficient unit, and thieno[3,2-b]thiophene and alkylthiophenes moieties as electron-rich units. By the inclusion of fused thiophene rings we intend to enhance the hole carrier properties. Various alkyl side-chains are introduced onto different positions along the conjugated backbone in order to reach efficient solubility in common organic solvents and simultaneously allow investigations of structure/properties relationships. We have also studied the effect of conjugation length and planarity on the optoelectronic properties. In the first section we discuss the synthesis methods of the monomers which involve several organic and organometallic reactions. Then, the copolymers have been synthesized by Stille or Suzuki cross coupling polycondensation. In the second part, special focus is devoted on how modifications in the conjugated backbone length and conformation (side chains length and positioning, coplanar units) are affecting the related material properties (electrochemical, UV-vis absorption, microstructure and charge carrier mobility). Finally, we have elaborated bulk heterojunction solar cells based on copolymer:C60-PCBM blend and correlated the OPV device performances with the optoelectronic properties of the polymers
Robin, Malo. „Développement de transistors à effet de champ organiques et de matériaux luminescents à base de nanoclusters par impression à jet d’encre“. Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S105/document.
Der volle Inhalt der QuelleThe objective of this thesis was to demonstrate the potentialities of inkjet printing for driving an HLED containing red phosphorescent metallic clusters, with organic field effect transistors. To achieve this goal, the project was divided into two parts: I) The fabrication and optimization of n-type organic transistors by photolithography and then transfer to inkjet printing. II) Parallel to the development of transistors, I focused on designing luminescent hybrid materials for HLED realization. Concerning transistors, we obtained a better understanding of the factors influencing the charge injection but also the electrical stability for bottom gate/ bottom contact geometry transistor with evaporated C60 semiconductor. We have demonstrated that the contact resistance is on the one hand governed by the morphology of the SCO at the electrodes and on the other hand independent of the metal work function. In addition, we have observed that transistors electrical stability of is strongly impacted by the source and drain contact nature. The optimization of photolithography transistors, which essentially consisted of modifying the interfaces, allowed us to develop efficient n-type transistors with saturated field effect mobilities of up to 1.5 cm2/V.s for a maximal process temperature of 115 °C. The technological transfer to inkjet printed transistors was then performed. We then demonstrated that gate electrode and insulator morphologies deposited by inkjet printing, have a negligible impact on transistors performances. For our printed structure, charges injection at the S/D electrodes is in fact the key factor for high performance transistors realization. Finally, red phosphorescent materials based on molybdenum octahedral metal cluster have been developed. The resulting hybrid copolymer showed photoluminescence quantum yield up to 51%. The realization of the HLED was then carried out by combining a commercial blue LED and the copolymer doped with octahedral molybdenum clusters for possible applications in biology or lighting
Oyhénart, Laurent. „Modélisation, réalisation et caractérisation de cristaux photoniques tridimensionnels en vue d'applications à la compatibilité électromagnétique“. Bordeaux 1, 2005. http://www.theses.fr/2005BOR13114.
Der volle Inhalt der QuelleGali, Sai Manoj. „Modélisation des relations structure / propriétés de transport de charge dans les matériaux pour l'électronique organique“. Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0693/document.
Der volle Inhalt der QuelleWith the advancement of technology, miniaturized electronic devices are progressively integrated into our everyday lives, generating concerns about cost, efficiency and environmental impact of electronic waste. Organic electronics offers a tangible solution paving the way for low-cost, flexible, transparent and environment friendly devices. However, improving the functionalities of organic (opto) electronic devices such as light emitting diodes and photovoltaics still poses technological challenges due to factors like low efficiencies, performance stability, flexibility etc. Although more and more organic materials are being developed to meet these challenges, one of the fundamental concerns still arises from the lack of established protocols that correlate the inherent properties of organic materials like the chemical structure, molecular conformation, supra-molecular arrangement to their resulting charge-transport characteristics.In this context, this thesis addresses the prediction of charge transport properties of organic semiconductors through theoretical and computational studies at the atomistic scale, developed along three main axes :(I) Structure-charge transport relationships of crystalline organic materials and the role of energetic fluctuations in amorphous polymeric organic semiconductors. Kinetic Monte-Carlo (KMC) studies employing the Marcus-Levich-Jortner rate formalism are performed on ten crystalline Group IV phthalocyanine derivatives and trends linking the crystalline arrangement to the anisotropic mobility of electrons and holes are obtained. Subsequently, KMC simulations based on the simpler Marcus formalism are performed on an amorphous semiconducting fluorene-triphenylamine (TFB) copolymer, to highlight the impact of energetic fluctuations on charge transport characteristics. A methodology is proposed to include these fluctuations towards providing a semi-quantitative estimate of charge-carrier mobilities at reduced computational cost.(II) Impact of a mechanical strain on the electronic and charge transport properties of crystalline organic materials. Crystalline rubrene and its polymorphs, as well as BTBT derivatives (well studied high mobility organic materials) are subjected to mechanical strain and their electronic response is analyzed. Employing tools like Molecular Dynamic (MD) simulations and plane wave DFT (PW-DFT) calculations, unusual electro-mechanical coupling between different crystallographic axes is demonstrated, highlighting the role of inherent anisotropy that is present in the organic single crystals which translates in an anisotropy of their electro-mechanical coupling.(III) Protonation-dependent conformation of polyelectrolyte and its role in governing the conductivity of polymeric conducting complexes. Polymeric bis(sulfonyl)imide substituted polystyrenes are currently employed as counter-ions and dopants for conducting poly(3,4-ethylenedioxythiophene) (PEDOT), resulting in PEDOT-polyelectrolyte conducting complexes. Employing MD simulations and DFT calculations, inherent characteristics of the polyelectrolyte like its acid-base behavior, protonation state and conformation, are analyzed in conjunction with available experimental data and the role of these characteristics in modulating the conductivity of resulting PEDOT-polyelectrolyte conducting complexes is highlighted.The above studies, performed on different organic electronic systems, emphasize the importance of inherent characteristics of organic materials in governing the charge transport behavior in these materials. By considering the inherent characteristics of organic electronic materials and systematically incorporating them into simulation models, accuracy of simulation predictions can be greatly improved, thereby serving not only as a tool to design new, stable and high performance organic materials but also for optimizing device performances
Evariste, Sloane. „Systèmes π-conjugués et assemblages supramoléculaires organophosphorés : synthèse et propriétés physico-chimiques“. Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S058/document.
Der volle Inhalt der QuelleThis manuscript describes the synthesis and characterization of new molecular systems based on phosphorus atom: we developed and studied π-conjugated systems based on phosphole and secondly supramolecular assemblies with phosphine ligand have been studied. Firstly, an introduction to the phosphole chemistry (history, synthesis methods, integration into π-conjugated systems) is presented. The first chapter describes the synthesis and physico-chemical study of phospholes derivatives having an extended π-system for the development of orange-red emitters in organic light-emitting diodes (OLEDs). Different molecular engineering involving the triple bond leads to modifications of the optical properties of the synthesized compounds by red-shifting their absorption and/or emission maxima. Chapter II describes the synthesis and the physical properties of complexes using phosphole based π-systems as linkers between two metal centers. New Fe (II), Pt (II) and Au (I) complexes have been developed and the electronic communication between the two metals is studied. The second part of the thesis work starts with a review on the emissive Cu(I) complexes. In Chapter III, are presented the syntheses, the structural and optical studies of new solid-state emissive supramolecular assemblies synthesized from pre-assembled Cu(I) molecular clips and stabilized by phosphine ligands (dppm or dpmp) with cyano ligands as linkers. Then in the final chapter new Cu(I) complexes are synthesized by using organic ligands with terminal nitrile functions as linkers. The solid-state luminescence properties of these new Cu(I) derivatives are studied according to their external environment and thermochromism, vapochromism and mechanochromism phenomena have been demonstrated for some of them
Gaffuri, Pierre. „Nouveaux matériaux pour des LED blanches éco-efficientes : hétérostructures à base de nanofils de ZnO et luminophores d'aluminoborates sans terres rares“. Thesis, Université Grenoble Alpes, 2021. http://www.theses.fr/2021GRALI004.
Der volle Inhalt der QuelleThe widespread implementation of white light-emitting diodes (wLEDs), based on the blue electroluminescence of an LED and the yellow photoluminescence of a phosphor, represents a major opportunity to reduce global energy consumption. The performances of wLEDs are based on materials considered as critical, such as gallium and gallium/indium nitrides for the blue LED, and cerium doped yttrium aluminium garnet for the phosphor. The synthesis of these materials require costly and high-temperature physical and chemical deposition techniques. In this context, new non-critical materials have been studied and manufactured by soft chemistry methods: ZnO nanowires array as n-type semiconductor, and aluminoborate powders as phosphor. On the one hand, the mechanisms of the extrinsic doping and related modification of the growth of ZnO nanowires deposited by chemical bath deposition were investigated, showing the dominant roles of pH and precursor concentrations. Defects and complex defects incorporated in ZnO nanowires, crucial from an application point of view, greatly modify their optical and electrical proprieties. Their epitaxial growth on p-type GaN thin films forms heterojunctions whose electroluminescence properties are evaluated. On the other hand, aluminoborate-based phosphors powders were synthesized by the Pechini method, by substituting yttrium, usually present in the amorphous particles. The optimization of the new chemical compositions and thermal annealing offers a broad emission whose internal quantum luminescence efficiency exceeds 60 %. This study provides a better understanding of the trapping of carbon species, and their role in the luminescence. Eventually, consumer interest in such structures without critical materials and with low embodied energy is measured and offers optimistic prospects for their development
Diebold, Morgane. „Systèmes composites organogélateurs/polymères semi-conducteurs : de la preuve conceptuelle aux matériaux nanostructurés pour l'électronique plastique“. Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAE002.
Der volle Inhalt der QuelleImproving the performances of organic photovoltaic devices requires morphology control of the active layers. Highly nanostructured donor-acceptor bulk heterojunctions were prepared by heterogeneous nucleation of poly (3-hexylthiophene) (P3HT, donor) on naphthalene diimide organogelators fibers (NDI, acceptor). The first part of this work was dedicated to the self-assembly of NDI-core organogelators substituted by amide groups and trialkoxyphenyls dendrons. We evaluated the influence of the flexible chain between the naphthalene core and the amide groups (2 C-C bonds for NDI2 and 4 for NDI4) on the physico-chemical properties of the organogelators.The second part of this work focused on the polymorphism of NDI2 with identification of four different polymorphs with their optical, spectroscopic and structural signatures. A phase diagram of NDI2 in the solid state was determined. The last part of this manuscript concerns the fabrication of donor-acceptor nano-composites between NDI organogelators and P3HT. The formation process in solution of these nano-composites was analyzed by following the crystallization kinetics of P3HT by UV-Vis absorption spectroscopy and the thin film morphology (shish-kebab structures) by transmission electron microscopy. The nucleating effect of various organogelators on P3HT was demonstrated. Solar cells were made from the composites P3HT:PCBM : organogelator and their energetic conversion yield was shown to be increased in the presence of organogelators
Vongsaysy, Uyxing. „Studies on processing additives introduced to increase the efficiency of organic solar cells : selection and mechanistic effects“. Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0230/document.
Der volle Inhalt der QuellePolymeric bulk heterojunction (BHJ) organic solar cells (OSCs) have attracted significant interest as a low cost and renewable technology to harvest solar energy. However, their generally low efficiencies are a barrier for their movement into commercial application. Controlling the BHJ morphology is a key step in the pursuit of higher OSC efficiencies. Processing additives have emerged as effective components for optimizing the BHJ morphology. This thesis provides a comprehensive study on the introduction of additives in the formulation of semiconductors. The semiconductor system studied is based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61 BM). First, a method was developed to guide the selection of additives from a large range of solvents. This method employs the Hansen solubility parameters of the semiconductors and was successfully applied to the P3HT/PC61 BMsystem. It resulted in the identification of three new efficient additives. Next, the mechanistic role of additives in influencing the BHJ morphology is investigated by performing structural, electrical and optical characterizations. Also, the effect of additives on OSC performance was found to depend on the type of the OSC architecture. Such differences were correlated to the variations in charge carrier mobilities caused by the additive. Furthermore, photo-stability tests, performed on different types of OSCs, showed that processing additives can improve the photo-stability. The origin of such improvement is investigated. Finally, the scope of this study is extended to two other donor semiconducting polymers
Ferhat, Salim. „Générateurs thermoélectriques imprimés sur substrats souples à base de matériaux hybrides pour des applications autour de la température ambiante“. Thesis, Limoges, 2018. http://www.theses.fr/2018LIMO0032/document.
Der volle Inhalt der QuelleFlexible lightweight printed thermoelectric devices can become particularly interesting with the advent of ubiquitous sensing and within the context of current energy and environmental issues. However, major drawbacks of state of the art thermoelectric materials must be addressed to make waste heat recovery devices commercially feasible. In this PhD thesis, we’ve elaborated and described a method to fabricate optimized, fully inkjetprinted flexible thermoelectric generators based on organic and hybrid semiconductors. This research project can be divided into three stages: First is the development of effective, stable and solution-processed p-type and n-type thermoelectric materials. Our effort in optimizing thermoelectric materials were based on modulation of charge carrier concentration and on control of morphology. Second, design and modeling of thermoelectric devices and their geometric parameters using numerical simulation methods. Numerical simulations were based on a 3D-finite element analysis and simulation software for coupled physical problems to model and design thermoelectric devices. Finally, formulation of materials into ink in order to produce thermoelectric generators by inkjet printing deposition. Various structures and architectures were experimentally characterized and systematically compared to numerical evaluations. Hence, we produced an extensive study on designing and producing thermoelectric devices operating at near ambient temperature and conditions
Du, Weiwei. „Development of new organic emissive materials for organic light-emitting diodes and organic laser applications“. Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS215.
Der volle Inhalt der QuelleIn this work, new organic emitting materials were designed for the organic light-emitting diodes (OLED) or laser applications. First, three series of through-space TADF (Thermally Activated Delayed Fluorescence) molecules based on different cyclophane cores have been successfully prepared. Their chemical structures were confirmed by Nuclear Magnetic Resonance (NMR) and high-resolution mass spectrometry (HRMS). The photophysical properties were investigated in solution and solid state. In these systems, the intramolecular charge transfer was produced via intramolecular through-space interactions between the donor and acceptor units, and their study revealed that most of these derivatives exhibit a TADF character. The electroluminescence properties of some derivatives were also investigated in OLED configuration and promising results were evidenced. Second, a new set of soluble gain molecules based on extended π-conjugated or three dimensional (3D) structures have been successfully synthesized for laser applications. Their chemical structures were confirmed by Nuclear Magnetic Resonance (NMR), high-resolution mass spectrometry (HRMS) and elemental analysis. High luminescence properties such as high photoluminescence quantum yields (PLQY) and short fluorescence lifetimes were demonstrated in both solution and solid state for most of the derivatives. Finally, these emitting materials exhibits good amplified spontaneous emission (ASE) properties with low thresholds and optically pumped laser devices were fabricated based on some derivatives of the series
Sizun, Thibaut. „Effet de l'humidité sur la réponse à l'ammoniac de capteurs conductimétriques à base de matériaux moléculaires“. Phd thesis, Université de Bourgogne, 2012. http://tel.archives-ouvertes.fr/tel-00783853.
Der volle Inhalt der QuelleLi, Haixia. „Design and characterization of new pyridazine materials for OLEDs and OSLs applications“. Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS227.
Der volle Inhalt der QuelleIn this work, new organic emitting materials have been developed for applications in the field of light emitting diodes or organic lasers. First of all, several molecules of the Donor-Acceptor type incorporating various electro-deficient nitrogenous hearts have been successfully prepared, their design being designed with the aim of obtaining TADF emitters. Their photophysical properties have been studied in solution and in the solid state. In these structures, intramolecular charge transfer is produced via intermolecular interactions between the D and A groups, and their study revealed that some of them exhibit a TADF character. The electroluminescence properties of the most promising compounds have also been studied in OLED configuration, even if to date the observed yields remain low. Then, a series of gain molecules based on pi-conjugated structures, still consisting of nitrogenous cores, have been successfully synthesized for laser applications. Their chemical structures have been characterized by nuclear magnetic resonance (NMR) and high-resolution mass spectroscopy (HRMS). Good luminescence properties such as high quantum photoluminescence yields (PLQY) and short fluorescence lifetimes have been demonstrated in solution and in the solid state for most derivatives. Finally, some emissive materials exhibit good amplified spontaneous emission (ASE) properties with low threshold values, and optically pumped laser devices could also be made from some of the derivatives of the series
Teng, Teng. „Semiconducting Materials Based on Donor/Acceptor Units for Optoelectronic Applications“. Electronic Thesis or Diss., Sorbonne université, 2018. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2018SORUS452.pdf.
Der volle Inhalt der QuelleLiquid crystalline semiconductors and narrow bandgap materials are two kinds of interesting materials for optoelectronic applications. They can be used in several type of organic electronic devices such as organic solar cells (OPV), Organic Light Emitting Diodes (OLED) and Organic Field Effect transistors (OFET). In this work, we focused on designing and synthesizing novel semiconducting materials based on donor/acceptor architectures which present either high photoluminescence and charge transport properties, or a narow bandgap for ambipolar charge transport. These materials are liquid crystalline molecules based on a benzothiadiazole acceptor core and alkoxyphenyl donor groups. The narrow bandgap molecules are based on a naphthalene diimide core and in this case flanked by benzothiadiazole units. The objective was to study their photophysical properties, charge transport properties, and to correlate this to the structural properties of the materials developed. Based on our results, we demostrated that these luminescent molecules possess liquid crystal properties with lamellar or multi-lamellar structures consisting of alternating layers of fluorescent units and high charge transport moieties. The charge transport properties measured of these compounds indicate that they have a potential for optoelectronic applications such as OFET devices. In addition, the two narrow bandgap molecules developed were found to exhibt n-type, and ambipolar charge transport properties
Jouane, Youssef. „Apport des couches interfaciales à base d'oxyde de Zinc déposé par pulvérisation dans les performances des cellules photovoltaïques organiques compatibles avec des substrats flexibles“. Phd thesis, Université Louis Pasteur - Strasbourg I, 2012. http://tel.archives-ouvertes.fr/tel-00769542.
Der volle Inhalt der QuelleStoeckel, Marc-Antoine. „Propriétés physico-chimiques et électroniques des interfaces supramoléculaires hybrides“. Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAF002/document.
Der volle Inhalt der QuelleThe work realized during this thesis was oriented toward the comprehension of the charge transport mechanism involved in organic electronics, and on the engineering of the semiconducting properties of hybrid supramolecular interfaces. Firstly, the intrinsic origin of the charge transport properties was studied for two semiconducting small molecules which are similar in terms of chemical structure but exhibit different electrical properties. Secondly, the electronic properties of 2D material were modulated with the help of self-assembled monolayers inducing antagonist doping properties. Finally, hybrid perovskites and semiconducting small molecules were used as active materials in oxygen and humidity sensing respectively, forming high-performance sensors. All the project employed the principles of the supramolecular chemistry in their realisation
Montagnac, Gilles. „Spectroscopie Raman résonnante UV in situ à haute température ou à haute pression“. Thesis, Lyon, École normale supérieure, 2012. http://www.theses.fr/2012ENSL0784/document.
Der volle Inhalt der QuelleI applied UV resonant Raman spectroscopy (UVRRS) to an ‘in situ’ study of carbon materials at very hight temperature (> 2000 K) or at high pressure (< 1 GPa).The advantages of UVRRS are presented in the first part of this PHD thesis, and used to investigate details of the composition and structure of disordered carbon materials such as: (1) n-type nanocrystalline films, (2) carbonaceous matter in chondrites and (3) tholins, HCN synthetic samples of Titan 's atmosphere.‘In situ’ Raman studies are limited to 2000 K by the visible black-body emission. I designed a high temperature cell to perform UVRRS above this limit. The second part of the manuscript presents Raman spectra of pyrolitic graphite and HOPG up to 2700 K. This data are consistent with anharmonic models up to 900 K, and show the coupling effects of electron-phonon and phonon-phonon. The last one dominates the anharmonicity above 1000 K. The Raman spectra was calibrated as a function of temperature and became a “thermometer” up to 2700 K.For high pressure measurements in the third part, I modified an anvil cell to study by UVRRS, the vibrational changes induced by pressure on very luminescent molecular organic crystals. I present an analysis at 244 nm of resonant Raman modes of perylene crystal under hydrostatic pressure up to 0.8 GPa. Some of them have a non linear feature under pressure, revealing structural and planar modifications of the molecules
Ibrahim, Fatima. „Theoretical study of electronic structure and magnetism in materials for spintronics“. Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAE003/document.
Der volle Inhalt der QuelleThe future of the spintronics technology requires developing functional materials with remarkable magnetic properties. The aim of this thesis is to understand the physics of functional materials proposed for spintronic applications using ab-initio density functional simulations. We investigated the properties of two different functional materials. We first studied the magnetoelectric gallium ferrite GFO. The dependence of the different properties on the iron concentration has been demonstrated and discussed. The optical spectra were calculated and compared to the experimental once suggesting high levels of iron disorder. In the second part, we demonstrated a highly spin polarized hybrid interface formed between manganese phthalocyanine and cobalt surface in agreement with photoemission experiments. The formation of this spinterface was described by different hybridization mechanisms in each spin channel. This high spin polarization is coordinated with induced magnetic moments on the molecular sites
Chevrier, Kevin. „Cohérence dans les systèmes métal/organique en couplage fort : états étendus et métasurfaces“. Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1235.
Der volle Inhalt der QuelleThis experimental thesis focuses on the manipulation and control of hybrid plasmon/exciton states. These states, called polaritons, build on the strong light/matter interaction. The strong coupling regime induces collective effects and coherence, by coupling emitters spatially separated and otherwise independents. The work conducted in this thesis aims to control and handle the spatial extension of the coherent states in order to create novel materials. Two approaches are exploited to impact the light/matter interaction. The first method is based on the improvement of the optical mode: we demonstrated the strong interaction between organic semiconductor (J-aggregate) excitons and long-range surface plasmons. This plasmonic mode allows to enhanced the extension of the coherent domain up to 50 µm. The second method acts on the active material. We evidenced a new type of metasurface based on a structuration of the excitonic layer at the micrometer scale: smaller than the coherent length but significantly larger than the wavelength. The typical metasurface effects, such as effective behavior and geometry sensitivity are highlighted. We use this feature to tailor the band structure and generate an important anisotropic effect associated with the geometry of the structuration, leading to controlled emission polarization
Djeghloul, Fatima Zohra. „Study of organic semiconductor / ferromagnet interfaces by spin-polarized electron scattering and photoemission“. Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-01062352.
Der volle Inhalt der QuelleCasademont, Hugo. „Semi-conducteurs 2D pour l’électronique flexible : évaluation du potentiel du MoS2 monocouche en tant que matériau de canal“. Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS365/document.
Der volle Inhalt der QuelleThis PhD thesis is dedicated to the assessment of the potential of monolayers of molybdenum disulfide (MoS2) as a N-type channel material for flexible electronics. This 2D semiconductor of atomic-scale thickness is chemically stable, mechanically robust and has a direct bandgap of 1.9 eV. This work includes the synthesis of MoS2 monolayers by Chemical Vapor Deposition (CVD) and the characterization of this material. The MoS2 monolayers were integrated in air-stable N-type transistors. The study highlighted the impact on the device performances of both the environment and the resistances at the MoS2/metal interfaces. Electronic mobilities of 20 cm²/(V.s) in combination with ION/IOFF ratios > 106 were achieved. These performances allowed integrating MoS2 monolayers in flexible transistors. This work was combined with the study of electrografted organic ultrathin films used as gate dielectrics and their integration in MoS2 transistors. This thesis shows that MoS2 monolayers are a viable option for flexible electronics operating at low bias, in particular when they are associated with ultrathin organic dielectrics
Denis, Jean-Christophe. „Modélisation du transfert ultra-rapide d'excitons dans les semiconducteurs organiques à base de fluorene“. Phd thesis, 2013. http://tel.archives-ouvertes.fr/tel-00991706.
Der volle Inhalt der Quelle