Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Materials for positive electrode.

Zeitschriftenartikel zum Thema „Materials for positive electrode“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Materials for positive electrode" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Tsai, Shan-Ho, Ying-Ru Chen, Yi-Lin Tsou, Tseng-Lung Chang, Hong-Zheng Lai und Chi-Young Lee. „Applications of Long-Length Carbon Nano-Tube (L-CNT) as Conductive Materials in High Energy Density Pouch Type Lithium Ion Batteries“. Polymers 12, Nr. 7 (30.06.2020): 1471. http://dx.doi.org/10.3390/polym12071471.

Der volle Inhalt der Quelle
Annotation:
Lots of lithium ion battery (LIB) products contain lithium metal oxide LiNi5Co2Mn3O2 (LNCM) as the positive electrode’s active material. The stable surface of this oxide results in high resistivity in the battery. For this reason, conductive carbon-based materials, including acetylene black and carbon black, become necessary components in electrodes. Recently, carbon nano-tube (CNT) has appeared as a popular choice for the conductive carbon in LIB. However, a large quantity of the conductive carbon, which cannot provide capacity as the active material, will decrease the energy density of batteries. The ultra-high cost of CNT, compared to conventional carbon black, is also a problem. In this work, we are going to introduce long-length carbon nano-tube s(L-CNT) into electrodes in order to design a reduced-amount conductive carbon electrode. The whole experiment will be done in a 1Ah commercial type pouch LIB. By decreasing conductive carbon as well as increasing the active material in the positive electrode, the energy density of the LNCM-based 1Ah pouch type LIB, with only 0.16% of L-CNT inside the LNCM positive electrode, could reach 224 Wh/kg and 549 Wh/L, in weight and volume energy density, respectively. Further, this high energy density LIB with L-CNT offers stable cyclability, which may constitute valuable progress in portable devices and electric vehicle (EV) applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Saulnier, M., A. Auclair, G. Liang und S. B. Schougaard. „Manganese dissolution in lithium-ion positive electrode materials“. Solid State Ionics 294 (Oktober 2016): 1–5. http://dx.doi.org/10.1016/j.ssi.2016.06.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sakuda, A., N. Taguchi, T. Takeuchi, H. Kobayashi, H. Sakaebe, K. Tatsumi und Z. Ogumi. „Amorphous Niobium Sulfides as Novel Positive-Electrode Materials“. ECS Electrochemistry Letters 3, Nr. 7 (22.05.2014): A79—A81. http://dx.doi.org/10.1149/2.0091407eel.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wang, Faxing, Xiongwei Wu, Chunyang Li, Yusong Zhu, Lijun Fu, Yuping Wu und Xiang Liu. „Nanostructured positive electrode materials for post-lithium ion batteries“. Energy & Environmental Science 9, Nr. 12 (2016): 3570–611. http://dx.doi.org/10.1039/c6ee02070d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ratynski, Maciej, Bartosz Hamankiewicz, Michal Krajewski, Maciej Boczar, Dominika Ziolkowska und Andrzej Czerwinski. „Single Step, Electrochemical Preparation of Copper-Based Positive Electrode for Lithium Primary Cells“. Materials 11, Nr. 11 (29.10.2018): 2126. http://dx.doi.org/10.3390/ma11112126.

Der volle Inhalt der Quelle
Annotation:
Lithium primary cells are commonly used in applications where high energy density and low self-discharge are the most important factors. This include small coin cells for electronics, power backup batteries for complementary metal-oxide-semiconductor memory or as a long-term emergency power source. In our study we present a fast, electrochemical method of the positive electrode preparation for lithium primary cells. The influence of the current density and oxygen presence in a solution on the preparation of the electrode and thus its electrochemical behavior is examined. Electrode compositions were characterized by X-ray photoelectron spectroscopy (XPS). The prepared electrodes may be used in Li cells as competition to Zn-MnO2 primary batteries.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Eliseeva, Svetlana N., Mikhail A. Kamenskii, Elena G. Tolstopyatova und Veniamin V. Kondratiev. „Effect of Combined Conductive Polymer Binder on the Electrochemical Performance of Electrode Materials for Lithium-Ion Batteries“. Energies 13, Nr. 9 (01.05.2020): 2163. http://dx.doi.org/10.3390/en13092163.

Der volle Inhalt der Quelle
Annotation:
The electrodes of lithium-ion batteries (LIBs) are multicomponent systems and their electrochemical properties are influenced by each component, therefore the composition of electrodes should be properly balanced. At the beginning of lithium-ion battery research, most attention was paid to the nature, size, and morphology peculiarities of inorganic active components as the main components which determine the functional properties of electrode materials. Over the past decade, considerable attention has been paid to development of new binders, as the binders have shown great effect on the electrochemical performance of electrodes in LIBs. The study of new conductive binders, in particular water-based binders with enhanced electronic and ionic conductivity, has become a trend in the development of new electrode materials, especially the conversion/alloying-type anodes. This mini-review provides a summary on the progress of current research of the effects of binders on the electrochemical properties of intercalation electrodes, with particular attention to the mechanisms of binder effects. The comparative analysis of effects of three different binders (PEDOT:PSS/CMC, CMC, and PVDF) for a number of oxide-based and phosphate-based positive and negative electrodes for lithium-ion batteries was performed based on literature and our own published research data. It reveals that the combined PEDOT:PSS/CMC binder can be considered as a versatile component of lithium-ion battery electrode materials (for both positive and negative electrodes), effective in the wide range of electrode potentials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kwon, Nam Hee, Joanna Conder, Mohammed Srout und Katharina M. Fromm. „Surface Modifications of Positive-Electrode Materials for Lithium Ion Batteries“. CHIMIA International Journal for Chemistry 73, Nr. 11 (01.11.2019): 880–93. http://dx.doi.org/10.2533/chimia.2019.880.

Der volle Inhalt der Quelle
Annotation:
Lithium ion batteries are typically based on one of three positive-electrode materials, namely layered oxides, olivine- and spinel-type materials. The structure of any of them is 'resistant' to electrochemical cycling, and thus, often requires modification/post-treatment to improve a certain property, for example, structural stability, ionic and/or electronic conductivity. This review provides an overview of different examples of coatings and surface modifications used for the positive-electrode materials as well as various characterization techniques often chosen to confirm/detect the introduced changes. It also assesses the electrochemical success of the surface-modified positive-electrode materials, thereby highlighting remaining challenges and pitfalls.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Li, Wangda, Bohang Song und Arumugam Manthiram. „High-voltage positive electrode materials for lithium-ion batteries“. Chemical Society Reviews 46, Nr. 10 (2017): 3006–59. http://dx.doi.org/10.1039/c6cs00875e.

Der volle Inhalt der Quelle
Annotation:
The ever-growing demand for advanced rechargeable lithium-ion batteries in portable electronics and electric vehicles has spurred intensive research efforts on high-voltage positive electrode materials over the past decade.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dupré, N. „Positive electrode materials for lithium batteries based on VOPO4“. Solid State Ionics 140, Nr. 3-4 (01.04.2001): 209–21. http://dx.doi.org/10.1016/s0167-2738(01)00818-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Guyomard, Dominique, Annie Le Gal La Salle, Yves Piffard, Alain Verbaere und Michel Tournoux. „Negative and positive electrode materials for lithium-ion batteries“. Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry 2, Nr. 11-13 (November 1999): 603–10. http://dx.doi.org/10.1016/s1387-1609(00)88572-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Ellis, Brian L., Kyu Tae Lee und Linda F. Nazar. „Positive Electrode Materials for Li-Ion and Li-Batteries†“. Chemistry of Materials 22, Nr. 3 (09.02.2010): 691–714. http://dx.doi.org/10.1021/cm902696j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Attias, Ran, Daniel Sharon, Arie Borenstein, David Malka, Ortal Hana, Shalom Luski und Doron Aurbach. „Asymmetric Supercapacitors Using Chemically Prepared MnO2as Positive Electrode Materials“. Journal of The Electrochemical Society 164, Nr. 9 (2017): A2231—A2237. http://dx.doi.org/10.1149/2.0161712jes.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Tanaka, Tamotsu. „Progress of Materials for Positive Electrode of Small-Sized Rechargeable Battery.“ Materia Japan 38, Nr. 6 (1999): 484–87. http://dx.doi.org/10.2320/materia.38.484.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Xie, Jian, und Qichun Zhang. „Recent progress in rechargeable lithium batteries with organic materials as promising electrodes“. Journal of Materials Chemistry A 4, Nr. 19 (2016): 7091–106. http://dx.doi.org/10.1039/c6ta01069e.

Der volle Inhalt der Quelle
Annotation:
Different organic electrode materials in lithium-ion batteries are divided into three types: positive electrode materials, negative electrode materials, and bi-functional electrode materials, and are further discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Hosono, Eiji, Hirofumi Matsuda, Masashi Okubo, Tetsuiichi Kudo, Shinobu Fujihara, Itaru Honma und Hao Shen Zhou. „Development of Positive Electrode Materials for the High Rate Lithium Ion Battery by Nanostructure Control“. Key Engineering Materials 445 (Juli 2010): 109–12. http://dx.doi.org/10.4028/www.scientific.net/kem.445.109.

Der volle Inhalt der Quelle
Annotation:
Previously, we reported the fabrication of Na0.44MnO2 and LiMn2O4 single crystalline nanowire structure. Moreover, these electrodes showed good high rate property as lithium ion battery, because the nanostructure electrode is suitable for high rate lithium ion battery. Especially, the fabrication of LiMn2O4 single crystalline nanowire was very interesting results because the synthesis of 1-dimesional single crystal structure of LiMn2O4 is very difficult based on cubic crystal structure without anisotropic structure. The LiMn2O4 single crystalline nanowire was obtained thorough the self template method using Na0.44MnO2 nanowire. In this paper, we report the fabrication of Na0.44MnO2 and LiMn2O4 single crystalline nanowire structure and the property of lithium ion battery as review paper.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

AKIMOTO, Junji. „Recent Progress in Positive Electrode Materials for Lithium-Ion Batteries“. Journal of the Japan Society of Colour Material 92, Nr. 7 (20.07.2019): 200–204. http://dx.doi.org/10.4011/shikizai.92.200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Kubota, Kei, Naoaki Yabuuchi, Hiroaki Yoshida, Mouad Dahbi und Shinichi Komaba. „Layered oxides as positive electrode materials for Na-ion batteries“. MRS Bulletin 39, Nr. 5 (Mai 2014): 416–22. http://dx.doi.org/10.1557/mrs.2014.85.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Sun, Ling Na. „Research of LiFePO4 as Positive Electrode Materials“. Applied Mechanics and Materials 217-219 (November 2012): 792–95. http://dx.doi.org/10.4028/www.scientific.net/amm.217-219.792.

Der volle Inhalt der Quelle
Annotation:
LiFePO4 is a promising cathode material for the next generation of a lithium-ion rechargeable battery. This paper introduces the research progress in recent years on LiFePO4 as positive electrode materials for lithium ion batteries. The methods of the preparation and modification, relation ship between structure and performance, and prospect of olivine-type lithium iron phosphate cathode materials was reviewed. Porous structures offer the potential to improve the electrochemical properties of LiFePO4.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Julien, C. M., A. Mauger, H. Groult und K. Zaghib. „Surface modification of positive electrode materials for lithium-ion batteries“. Thin Solid Films 572 (Dezember 2014): 200–207. http://dx.doi.org/10.1016/j.tsf.2014.07.063.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Padhi, A. K., K. S. Nanjundaswamy und J. B. Goodenough. „Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries“. Journal of The Electrochemical Society 144, Nr. 4 (01.04.1997): 1188–94. http://dx.doi.org/10.1149/1.1837571.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Le, My Loan Phung, Thi Xuan Binh Lam, Quoc Trung Pham und Thi Phuong Thoa Nguyen. „Investigation of positive electrode materials based on MnO2for lithium batteries“. Advances in Natural Sciences: Nanoscience and Nanotechnology 2, Nr. 2 (20.05.2011): 025014. http://dx.doi.org/10.1088/2043-6262/2/2/025014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Ati, Mohamed, Wesley Thomas Walker, Karim Djellab, Michel Armand, Nadir Recham und Jean-Marie Tarascon. „Fluorosulfate Positive Electrode Materials Made with Polymers as Reacting Media“. Electrochemical and Solid-State Letters 13, Nr. 11 (2010): A150. http://dx.doi.org/10.1149/1.3477936.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Konuma, Itsuki, und Naoaki Yabuuchi. „High Capacity Li-Excess Vanadium Oxides for Positive Electrode Materials“. ECS Meeting Abstracts MA2020-02, Nr. 68 (23.11.2020): 3536. http://dx.doi.org/10.1149/ma2020-02683536mtgabs.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Wang, J., J. Chen, K. Konstantinov, L. Zhao, S. H. Ng, G. X. Wang, Z. P. Guo und H. K. Liu. „Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries“. Electrochimica Acta 51, Nr. 22 (Juni 2006): 4634–38. http://dx.doi.org/10.1016/j.electacta.2005.12.046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Meunier, G., R. Dormoy und A. Levasseur. „New positive-electrode materials for lithium thin film secondary batteries“. Materials Science and Engineering: B 3, Nr. 1-2 (Juli 1989): 19–23. http://dx.doi.org/10.1016/0921-5107(89)90173-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Kakeya, Tadashi, Akiyoshi Nakata, Hajime Arai und Zempachi Ogumi. „Enhanced zinc electrode rechargeability in alkaline electrolytes containing hydrophilic organic materials with positive electrode compatibility“. Journal of Power Sources 407 (Dezember 2018): 180–84. http://dx.doi.org/10.1016/j.jpowsour.2018.08.026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Chen, J., D. H. Bradhurst, S. X. Dou und H. K. Liu. „The effect of Zn(OH)2 addition on the electrode properties of nickel hydroxide electrodes“. Journal of Materials Research 14, Nr. 5 (Mai 1999): 1916–21. http://dx.doi.org/10.1557/jmr.1999.0257.

Der volle Inhalt der Quelle
Annotation:
Nickel hydroxide powders currently used in the positive electrode of nickel-metal hydride (Ni–MH) batteries require cobalt or cobalt oxides to make them viable and attractive. As a step to eliminate the cobalt-containing materials, spherical nickel hydroxide powders coprecipitated with Zn(OH)2 were prepared by a spraying technique. These powders, which have a higher tapping density and a much smaller pore volume than conventional powders, were used as the active materials of nickel hydroxide electrodes. The effects of the Zn(OH)2 additions on the electrode properties, such as percentage utilization and cycle life, were studied, and the relationship between the electrode performance and the formation of γ–NiOOH was investigated. The cycle life was increased because there was less electrode swelling due to much reduced formation of γ–NiOOH.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Hao, Zhen Dong, Xiaolong Xu, Hao Wang, Jingbing Liu und Hui Yan. „Research Progress on Surface Coating Layers on the Positive Electrode for Lithium Ion Batteries“. Nano 13, Nr. 11 (November 2018): 1830007. http://dx.doi.org/10.1142/s1793292018300074.

Der volle Inhalt der Quelle
Annotation:
Lithium ion batteries (LIBs) are one of the most promising secondary batteries due to their advantages including long cycle life, high energy density, limited self-discharge, high operating voltage and environmental friendliness. The development of electrode materials is crucial for the further application of LIBs. There are many effective ways to enhance the performance of positive electrode materials of LIBs such as surface coating, ion doping, preparation of composite materials and nanosized materials and so forth. Among them, surface coating is considered to be a promising way to improve the electrochemical performance of LIBs. Surface coating can normally form a physical barrier or a doped surface layer to play favorable roles for the electrode materials, such as hindering side reactions between positive electrode materials and the electrolyte. In this paper, different kinds of surface coating layers will be discussed according to previous research, including carbon materials, metal oxides, metal fluorides, metal phosphates, nonmetal oxides, electrode materials coating layer, hybrid coating layer, polymer and so forth. In addition, the mechanism of these coating materials will be summarized, and the future development will be discussed in this paper.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Xayyavong, Mingkhouan, Kittipong Tonmitr, Norrawit Tonmitr und Eiji Kaneko. „The Scrutiny of the Insulation Breakdown Strength for the Nanocomposite Oxide Doped Epoxy Resin Insulator with Different Electrodes by Using Positive Impulse Voltage“. Key Engineering Materials 705 (August 2016): 63–67. http://dx.doi.org/10.4028/www.scientific.net/kem.705.63.

Der volle Inhalt der Quelle
Annotation:
This research presents the ratio of doping nanocomposite oxides in dielectric materials for increasing the efficiency strength and endurance voltage. Tests were conducted and analyzed the characteristics of epoxy nanozinc oxides. By using positive standard impulse voltage abilities of nanocomposite oxides were used as electrical insulators-epoxy resin doped with zinc oxides nanocomposite in ratios of 0, 5, 10, 15, and 20% by weight. And the design of electrodes embeds in the specimens with 4 types of electrode, as needle electrode, point electrode, spherical electrode and the partial spherical electrode. When adjusted the impulse voltage level of 75kV to the specimen immersed in transformer oil. The experiment aforementioned to investigate the ratios damages on insulator surfaces and the number of breakdowns. The microscopes with magnification levels of 20-800X were used to view the damages on insulator surfaces. Results, it was found that regarding specimens used for doping an epoxy resin with zinc oxides nanocomposite in a ratio of 5% had high withstand insulator with electrode types. The partial spherical electrode tested with positive impulse standard voltage has destructive distance lower damage than other electrode types.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Li, Zhuang, Hongliang Kang, Ning Che, Zhijing Liu, Pingping Li, Weiwei Li, Chao Zhang, Chun Cao, Ruigang Liu und Yong Huang. „Effects of Electrode Reversal on the Distribution of Naproxen in the Electrospun Cellulose Acetate Nanofibers“. Journal of Nanomaterials 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/360658.

Der volle Inhalt der Quelle
Annotation:
Naproxen (NAP)/cellulose acetate hybrid nanofibers were prepared by positive and reversed emitting electrodes electrospinning setups. The morphology and structure of the resultant nanofibers were characterized, and the NAP release behaviors were investigated. It was found that NAP dispersed in the CA matrix in molecular level, and no aggregation and dimers of NAP were found in the resultant NAP/CA hybrid nanofibers due to the formation of hydrogen bonds between NAP and CA. The nanofibers obtained by reversed emitting electrode electrospinning setup have a thicker diameter and a faster NAP release rate compared with those obtained by positive emitting electrode electrospinning setup. The faster drug release of NAP from nanofibers prepared by reversed emitting electrode electrospinning is due to the fact that the concentration of NAP molecules near the surface of the nanofibers is relatively higher than that of the nanofibers prepared by positive emitting electrode electrospinning setup. The effects of the electrode polarity on the distribution of drugs in nanofibers can be used to prepare hybrid electrospun fibers of different drug release rates, which may found applications in biomedical materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Terashita, Keijiro, Hideya Asano und Kei Miyanami. „Wet Dispersion of Positive Electrode Materials for Lithium lon Secondary Batteries.“ Journal of the Japan Society of Powder and Powder Metallurgy 48, Nr. 3 (2001): 254–59. http://dx.doi.org/10.2497/jjspm.48.254.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Ohzuku, Tsutomu, und Ralph J. Brodd. „An overview of positive-electrode materials for advanced lithium-ion batteries“. Journal of Power Sources 174, Nr. 2 (Dezember 2007): 449–56. http://dx.doi.org/10.1016/j.jpowsour.2007.06.154.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

KIKKAWA, Jun, Tomoki AKITA, Mitsuharu TABUCHI, Masahiro SHIKANO, Kuniaki TATSUMI und Masanori KOHYAMA. „STEM-EELS Analyses of Positive Electrode Materials for Lithium Ion Batteries“. Nihon Kessho Gakkaishi 54, Nr. 2 (2012): 95–100. http://dx.doi.org/10.5940/jcrsj.54.95.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Chung, Sung-Yoon. „Comment on “Positive Electrode Materials for Li-Ion and Li-Batteries”“. Chemistry of Materials 24, Nr. 11 (15.05.2012): 2240–43. http://dx.doi.org/10.1021/cm203525f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Ellis, Brian L., Kyu Tae Lee und Linda F. Nazar. „ChemInform Abstract: Positive Electrode Materials for Li-Ion and Li-Batteries“. ChemInform 41, Nr. 31 (09.07.2010): no. http://dx.doi.org/10.1002/chin.201031221.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Fan, Lin, Yue Ru, Huaiguo Xue, Huan Pang und Qiang Xu. „Vanadium‐Based Materials as Positive Electrode for Aqueous Zinc‐Ion Batteries“. Advanced Sustainable Systems 4, Nr. 12 (24.09.2020): 2000178. http://dx.doi.org/10.1002/adsu.202000178.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Renman, Viktor, Mario Valvo, Cheuk-Wai Tai, Cesar Pay Gómez, Kristina Edström und Anti Liivat. „Manganese pyrosilicates as novel positive electrode materials for Na-ion batteries“. Sustainable Energy & Fuels 2, Nr. 5 (2018): 941–45. http://dx.doi.org/10.1039/c7se00587c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Gürsu, Hürmüs, Metin Gençten und Yücel Şahin. „Cyclic voltammetric preparation of graphene-coated electrodes for positive electrode materials of vanadium redox flow battery“. Ionics 24, Nr. 11 (14.04.2018): 3641–54. http://dx.doi.org/10.1007/s11581-018-2547-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Barton, R. T., M. Hughes, S. A. G. R. Karunathilaka und N. A. Hampson. „Impedance of the sintered nickel positive electrode“. Journal of Applied Electrochemistry 15, Nr. 3 (Mai 1985): 399–404. http://dx.doi.org/10.1007/bf00615992.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Nam, Young Jin, Kern Ho Park, Dae Yang Oh, Woo Hyun An und Yoon Seok Jung. „Diagnosis of failure modes for all-solid-state Li-ion batteries enabled by three-electrode cells“. Journal of Materials Chemistry A 6, Nr. 30 (2018): 14867–75. http://dx.doi.org/10.1039/c8ta03450h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Pianta, Nicolò, Davide Locatelli und Riccardo Ruffo. „Cycling properties of Na3V2(PO4)2F3 as positive material for sodium-ion batteries“. Ionics 27, Nr. 5 (02.04.2021): 1853–60. http://dx.doi.org/10.1007/s11581-021-04015-y.

Der volle Inhalt der Quelle
Annotation:
AbstractThe research into sodium-ion battery requires the development of high voltage cathodic materials to compensate for the potential of the negative electrode materials which is usually higher than the lithium counterparts. In this framework, the polyanionic compound Na3V2(PO4)2F3 was prepared by an easy-to-scale-up carbothermal method and characterized to evaluate its electrochemical performances in half cell vs. metallic sodium. The material shows a specific capacity (115 mAh g−1) close to the theoretical limit, good coulombic efficiency (>99%) and an excellent stability over several hundred cycles at high rate. High-loading free-standing electrodes were also tested, which showed interesting performances in terms of areal capacity and cyclability.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

XU, JING, DAE HOE LEE und YING SHIRLEY MENG. „RECENT ADVANCES IN SODIUM INTERCALATION POSITIVE ELECTRODE MATERIALS FOR SODIUM ION BATTERIES“. Functional Materials Letters 06, Nr. 01 (Februar 2013): 1330001. http://dx.doi.org/10.1142/s1793604713300016.

Der volle Inhalt der Quelle
Annotation:
Significant progress has been achieved in the research on sodium intercalation compounds as positive electrode materials for Na-ion batteries. This paper presents an overview of the breakthroughs in the past decade for developing high energy and high power cathode materials. Two major classes, layered oxides and polyanion compounds, are covered. Their electrochemical performance and the related crystal structure, solid state physics and chemistry are summarized and compared.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Wang, Cunguo, Rongrong Chu, Zhixing Guan, Zaka Ullah, Hewei Song, Yingfei Zhang, Congcong Yu, Liyi Zhao, Qi Li und Liwei Liu. „Tailored polyimide as positive electrode and polyimide-derived carbon as negative electrode for sodium ion full batteries“. Nanoscale 12, Nr. 7 (2020): 4729–35. http://dx.doi.org/10.1039/c9nr09237d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Barzegar, F., A. Bello, D. Y. Momodu, J. K. Dangbegnon, F. Taghizadeh, M. J. Madito, T. M. Masikhwa und N. Manyala. „Asymmetric supercapacitor based on an α-MoO3 cathode and porous activated carbon anode materials“. RSC Advances 5, Nr. 47 (2015): 37462–68. http://dx.doi.org/10.1039/c5ra03579a.

Der volle Inhalt der Quelle
Annotation:
Low cost porous carbon materials were produced from cheap polymer materials and graphene foam materials which were tested as a negative electrode material in an asymmetric cell configuration with α-MoO3 as a positive electrode.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Liu, Chang, Wei Jiang, Fang Hu, Xiang Wu und Dongfeng Xue. „Mesoporous NiCo2O4 nanoneedle arrays as supercapacitor electrode materials with excellent cycling stabilities“. Inorganic Chemistry Frontiers 5, Nr. 4 (2018): 835–43. http://dx.doi.org/10.1039/c8qi00010g.

Der volle Inhalt der Quelle
Annotation:
An assembled supercapacitor using a mesoporous NiCo2O4 electrode as the positive electrode achieves 140.6% capacity retention which is attained after 8000 cycles at 10 mA cm−2.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Klenushkin, Anatoly, Boris Medvedev, Yuri Kabirov und Mikhail Evdokimov. „Iron Oxide Materials for Positive Electrodes of Lithium and Lithium-Ion Batteries“. Advanced Materials Research 705 (Juni 2013): 46–51. http://dx.doi.org/10.4028/www.scientific.net/amr.705.46.

Der volle Inhalt der Quelle
Annotation:
New iron cathode materials: strontium hexaferrite, spinel-like ferrites of copper, lithium, and zinc, as well as α-and γ-phases of iron (3+) oxide are proposed. Chronopotentiometry method allowed demonstrating the possibility to use ferrites and iron (3+) oxides as the positive electrode materials for lithium batteries.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

y de Dompablo, M. „Bi4V2O11 and related compounds as positive electrode materials for lithium rechargeable batteries“. Solid State Ionics 91, Nr. 3-4 (02.10.1996): 273–78. http://dx.doi.org/10.1016/s0167-2738(96)00444-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Arroyo y de Dompablo, M. E., F. García-Alvarado und E. Morán. „Bi4V2O11 and related compounds as positive electrode materials for lithium rechargeable batteries“. Solid State Ionics 91, Nr. 3-4 (Oktober 1996): 273–78. http://dx.doi.org/10.1016/s0167-2738(96)83029-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Minowa, Hironobu, Yuhki Yui, Yoko Ono, Masahiko Hayashi, Katsuya Hayashi, Ryuchi Kobayashi und Kazue I. Takahashi. „Characterization of Prussian blue as positive electrode materials for sodium-ion batteries“. Solid State Ionics 262 (September 2014): 216–19. http://dx.doi.org/10.1016/j.ssi.2013.12.024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Takeuchi, Tomonari, Hiroyuki Kageyama, Masahiro Ogawa, Kei Mitsuhara, Koji Nakanishi, Toshiaki Ohta, Atsushi Sakuda, Hironori Kobayashi, Hikari Sakaebe und Zempachi Ogumi. „Preparation of Li2S–FePS3 composite positive electrode materials and their electrochemical properties“. Solid State Ionics 288 (Mai 2016): 199–203. http://dx.doi.org/10.1016/j.ssi.2015.11.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie