Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Materials for positive electrode“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Materials for positive electrode" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Materials for positive electrode"
Tsai, Shan-Ho, Ying-Ru Chen, Yi-Lin Tsou, Tseng-Lung Chang, Hong-Zheng Lai und Chi-Young Lee. „Applications of Long-Length Carbon Nano-Tube (L-CNT) as Conductive Materials in High Energy Density Pouch Type Lithium Ion Batteries“. Polymers 12, Nr. 7 (30.06.2020): 1471. http://dx.doi.org/10.3390/polym12071471.
Der volle Inhalt der QuelleSaulnier, M., A. Auclair, G. Liang und S. B. Schougaard. „Manganese dissolution in lithium-ion positive electrode materials“. Solid State Ionics 294 (Oktober 2016): 1–5. http://dx.doi.org/10.1016/j.ssi.2016.06.007.
Der volle Inhalt der QuelleSakuda, A., N. Taguchi, T. Takeuchi, H. Kobayashi, H. Sakaebe, K. Tatsumi und Z. Ogumi. „Amorphous Niobium Sulfides as Novel Positive-Electrode Materials“. ECS Electrochemistry Letters 3, Nr. 7 (22.05.2014): A79—A81. http://dx.doi.org/10.1149/2.0091407eel.
Der volle Inhalt der QuelleWang, Faxing, Xiongwei Wu, Chunyang Li, Yusong Zhu, Lijun Fu, Yuping Wu und Xiang Liu. „Nanostructured positive electrode materials for post-lithium ion batteries“. Energy & Environmental Science 9, Nr. 12 (2016): 3570–611. http://dx.doi.org/10.1039/c6ee02070d.
Der volle Inhalt der QuelleRatynski, Maciej, Bartosz Hamankiewicz, Michal Krajewski, Maciej Boczar, Dominika Ziolkowska und Andrzej Czerwinski. „Single Step, Electrochemical Preparation of Copper-Based Positive Electrode for Lithium Primary Cells“. Materials 11, Nr. 11 (29.10.2018): 2126. http://dx.doi.org/10.3390/ma11112126.
Der volle Inhalt der QuelleEliseeva, Svetlana N., Mikhail A. Kamenskii, Elena G. Tolstopyatova und Veniamin V. Kondratiev. „Effect of Combined Conductive Polymer Binder on the Electrochemical Performance of Electrode Materials for Lithium-Ion Batteries“. Energies 13, Nr. 9 (01.05.2020): 2163. http://dx.doi.org/10.3390/en13092163.
Der volle Inhalt der QuelleKwon, Nam Hee, Joanna Conder, Mohammed Srout und Katharina M. Fromm. „Surface Modifications of Positive-Electrode Materials for Lithium Ion Batteries“. CHIMIA International Journal for Chemistry 73, Nr. 11 (01.11.2019): 880–93. http://dx.doi.org/10.2533/chimia.2019.880.
Der volle Inhalt der QuelleLi, Wangda, Bohang Song und Arumugam Manthiram. „High-voltage positive electrode materials for lithium-ion batteries“. Chemical Society Reviews 46, Nr. 10 (2017): 3006–59. http://dx.doi.org/10.1039/c6cs00875e.
Der volle Inhalt der QuelleDupré, N. „Positive electrode materials for lithium batteries based on VOPO4“. Solid State Ionics 140, Nr. 3-4 (01.04.2001): 209–21. http://dx.doi.org/10.1016/s0167-2738(01)00818-9.
Der volle Inhalt der QuelleGuyomard, Dominique, Annie Le Gal La Salle, Yves Piffard, Alain Verbaere und Michel Tournoux. „Negative and positive electrode materials for lithium-ion batteries“. Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry 2, Nr. 11-13 (November 1999): 603–10. http://dx.doi.org/10.1016/s1387-1609(00)88572-2.
Der volle Inhalt der QuelleDissertationen zum Thema "Materials for positive electrode"
Clark, John. „Computer modelling of positive electrode materials for lithium and sodium batteries“. Thesis, University of Bath, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616648.
Der volle Inhalt der QuelleBlidberg, Andreas. „Iron Based Materials for Positive Electrodes in Li-ion Batteries : Electrode Dynamics, Electronic Changes, Structural Transformations“. Doctoral thesis, Uppsala universitet, Strukturkemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-317014.
Der volle Inhalt der QuelleSun, Meiling. „Elaboration of novel sulfate based positive electrode materials for Li-ion batteries“. Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066686/document.
Der volle Inhalt der QuelleThe increasing demand of our society for Li-ion batteries calls for the development of positive electrode materials, with specific requirements in terms of energy density, cost, and sustainability. In such a context, we explored four sulfate based compounds: a fluorosulfate – LiCuSO4F, and a family of oxysulfates – Fe2O(SO4)2, Li2Cu2O(SO4)2 and Li2VO(SO4)2. Herein their synthesis, structure, and electrochemical performances are presented for the first time. Being electrochemically inactive, LiCuSO4F displays an ordered triplite structure which is distinct from other fluorosulfates. The electrochemical activity of the oxysulfate compounds was explored towards lithium. Specifically, Fe2O(SO4)2 delivers a sustained reversible capacity of about 125 mA∙h/g at 3.0 V vs. Li+/Li0; Li2VO(SO4)2 and Li2Cu2O(SO4)2 respectively exhibit the highest potential of 4.7 V vs. Li+/Li0 among V- and Cu- based compounds. Last but not least, the Li2Cu2O(SO4)2 phase reveals the possibility of anionic electrochemical activity in a polyanionic positive electrode. Their physical properties, such as ionic conductivities and magnetic properties are also reported. Overall, this makes oxysulfates interesting to study as polyanionic positive electrodes for Li-ion batteries
Martin, Andréa Joris Quentin. „Nano-sized Transition Metal Fluorides as Positive Electrode Materials for Alkali-Ion Batteries“. Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21619.
Der volle Inhalt der QuelleMetal fluoride compounds appear as very appealing candidates for the next generation of alkali-ion battery cathodes. However, many drawbacks prevent this family of compounds to be applicable to storage systems. Metal fluorides demonstrate a high insulating character, and the mechanisms involved during the discharge/charge processes atom engender large volume changes and a drastic reorganization of the material, which induces poor reversibility. In order to answer these problematics, the present thesis reports the elaboration of innovative synthesis routes for transition metal fluoride compounds and the application of these fluoride materials in alkali-ion battery systems. In a first part, MFx compounds (M = Co, Fe; x = 2 or 3) are studied. Those compounds exhibit high initial capacity but very poor cyclability and low C-rate capabilities. Ex-situ X-ray diffraction and transmission electron microscopy demonstrate that the low reversibility of the processes is mainly due to the conversion reaction occurring during their discharge/charge. In the second part, the syntheses of transition metal fluoride perovskites are reported, as well as their electrochemical properties. NaFeF3 demonstrates excellent performances and reversibility. The study of the mechanisms occurring during its charge/discharge processes towards different alkali systems by ex-situ and operando X-ray diffraction reveals that its crystalline framework is maintained along the cycles, resulting in high reversibility and excellent C-rate performance. This retention of the crystal framework is possible by an electrochemical stabilization of a cubic conformation of FeF3, which is usually only observable at high temperature (400 °C), and can be explained by lower reorganizations within the crystal framework. Similar electrochemical properties could be observed for KFeF3 and NH4FeF3, where ammonium ions are reported for the first time as a charge carrier in alkali-ion systems.
Chen, Chih-Yao. „A study on positive electrode materials for sodium secondary batteries utilizing ionic liquids as electrolytes“. Kyoto University, 2014. http://hdl.handle.net/2433/192207.
Der volle Inhalt der QuelleBoivin, Édouard. „Crystal chemistry of vanadium phosphates as positive electrode materials for Li-ion and Na-ion batteries“. Thesis, Amiens, 2017. http://www.theses.fr/2017AMIE0032/document.
Der volle Inhalt der QuelleThis PhD work aims at exploring new Tavorite-type materials and at revisiting some of the well-known ones. The syntheses of targeted compositions were firstly performed using various ways (all solid state, hydrothermal, sol-gel assisted ceramic, ball milling) in order to stabilize eventual metastable phases and tune the microstructure impacting strongly the electrochemical performances of such polyanionic compounds. The materials were then described in-depth, at the pristine state, from their average long range structures, thanks to diffraction techniques (powder X-rays, single crystal X-rays and neutrons diffraction), to their local environments, using spectroscopy techniques (solid state Nuclear Magnetic Resonance, X-rays Absorption Spectroscopy, Infra-Red and/or Raman). Thereafter, the phase diagrams and the redox processes involved during electrochemical operation of the materials were investigated thanks to operando techniques (SXRPD and XAS). The in-depth understanding of the mechanisms involved during cycling allows to highlight the reasons of their electrochemical limitations: the synthesis of new materials (composition, structure and microstructure) can now be developed to overcome these limitations and tend toward better performance
Martin, Andréa Joris Quentin [Verfasser]. „Nano-sized Transition Metal Fluorides as Positive Electrode Materials for Alkali-Ion Batteries / Andréa Joris Quentin Martin“. Berlin : Humboldt-Universität zu Berlin, 2020. http://d-nb.info/1220690406/34.
Der volle Inhalt der QuelleGao, Shuang. „INVESTIGATION OF TRANSITION-METAL IONS IN THE NICKEL-RICH LAYERED POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES“. UKnowledge, 2019. https://uknowledge.uky.edu/cme_etds/100.
Der volle Inhalt der QuelleNakanishi, Shinji. „Studies on Reaction Mechanism of Lithium Air Secondary Battery and Effects of Carbonaceous Materials to Positive Electrode“. 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/174954.
Der volle Inhalt der QuelleMadsen, Alex. „Lithium iron sulphide as a positive electrode material for rechargeable lithium batteries“. Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/355748/.
Der volle Inhalt der QuelleBücher zum Thema "Materials for positive electrode"
Tiwari, Ashutosh, Filiz Kuralay und Lokman Uzun, Hrsg. Advanced Electrode Materials. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119242659.
Der volle Inhalt der QuelleKebede, Mesfin A., und Fabian I. Ezema. Electrode Materials for Energy Storage and Conversion. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003145585.
Der volle Inhalt der QuelleYoshitake, Michiko. Work Function and Band Alignment of Electrode Materials. Tokyo: Springer Japan, 2021. http://dx.doi.org/10.1007/978-4-431-56898-8.
Der volle Inhalt der QuelleAma, Onoyivwe Monday, und Suprakas Sinha Ray, Hrsg. Nanostructured Metal-Oxide Electrode Materials for Water Purification. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43346-8.
Der volle Inhalt der QuelleGileadi, Eliezer. Electrode kinetics for chemists, chemical engineers and materials scientists. New York: Wiley-VCH, 1993.
Den vollen Inhalt der Quelle findenGileadi, Eliezer. Electrode kinetics for chemists, chemical engineers, and materials scientists. New York: VCH, 1993.
Den vollen Inhalt der Quelle findenMinett, Michael Geoffrey. New composite insertion electrode materials for secondary lithium cells. Salford: University of Salford, 1989.
Den vollen Inhalt der Quelle findenSymposium on High Temperature Electrode Materials and Characterization (1991 Washington, D.C.). Proceedings of the Symposium on High Temperature Electrode Materials and Characterization. Pennington, NJ: Electrochemical Society, 1991.
Den vollen Inhalt der Quelle findenDams, R. A. J. Performance tests on new electrode materials for hydrogen production by water electrolysis. Luxembourg: Commission of the European Communities, 1986.
Den vollen Inhalt der Quelle findenA, Barbero Cesar, und SpringerLink (Online service), Hrsg. Laser Techniques for the Study of Electrode Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Materials for positive electrode"
Rougier, A., und C. Delmas. „LiNi(M)O2 Layered Oxides: Positive Electrode Materials for Lithium Batteries“. In Materials for Lithium-Ion Batteries, 471–76. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4333-2_24.
Der volle Inhalt der QuelleYoshio*, Masaki, und Hideyuki Noguchi. „A Review of Positive Electrode Materials for Lithium-Ion Batteries“. In Lithium-Ion Batteries, 1–40. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-34445-4_2.
Der volle Inhalt der QuelleNasirpouri, Farzad. „Fundamentals and Principles of Electrode-Position“. In Electrodeposition of Nanostructured Materials, 75–121. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44920-3_3.
Der volle Inhalt der QuelleCho, Gyu Bong, Sang Sik Jeong, Soo Moon Park und Tae Hyun Nam. „Application of a Ti-Ni Alloy as a Current Collector of Positive Electrode for Lithium/Sulfur Batteries“. In Materials Science Forum, 650–53. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-966-0.650.
Der volle Inhalt der QuelleMomchilov, A., A. Trifonova, B. Banov, B. Puresheva und A. Kozawa. „PTFE-Acetylene Black and Ultrafine Carbon Suspensions as a Conductive Binder and Conductive Additive for the Positive Electrodes of the Lithium and Li-Ion Batteries“. In Materials for Lithium-Ion Batteries, 565–70. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4333-2_41.
Der volle Inhalt der QuelleMachida, Nobuya, und Akitoshi Hayashi. „Sulfur and Sulfide Positive Electrode“. In Next Generation Batteries, 125–35. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_12.
Der volle Inhalt der QuelleTerny, S., und M. A. Frechero. „Study of Phosphate Polyanion Electrodes and Their Performance with Glassy Electrolytes: Potential Application in Lithium Ion Solid-state Batteries“. In Advanced Electrode Materials, 321–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119242659.ch8.
Der volle Inhalt der QuelleSoloducho, J., J. Cabaj und D. Zając. „Advances in Electrode Materials“. In Advanced Electrode Materials, 1–26. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119242659.ch1.
Der volle Inhalt der QuelleÇelebi, Mutlu Sönmez. „Energy Applications: Fuel Cells“. In Advanced Electrode Materials, 397–434. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119242659.ch10.
Der volle Inhalt der QuelleZhu, Mingshan, Mingshan Zhu, Chunyang Zhai und Cheng Lu. „Novel Photoelectrocatalytic Electrodes Materials for Fuel Cell Reactions“. In Advanced Electrode Materials, 435–56. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119242659.ch11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Materials for positive electrode"
Amatucci, Glenn, R. Badway, A. DuPasquier, F. Cosandey und I. Plitz. „Next Generation Positive Electrode Materials Enabled by Nanocomposites: Metal Fluorides“. In 1st International Energy Conversion Engineering Conference (IECEC). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-6066.
Der volle Inhalt der QuelleYabuuchi, N. „High-capacity positive electrode materials with cationic/anionic redox for non-aqueous batteries“. In 2018 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2018. http://dx.doi.org/10.7567/ssdm.2018.f-2-01.
Der volle Inhalt der QuelleR, Anaswara Raj L., Sreenidhi P R und Baby Sreeja S D. „Study on Positive Electrode material in Li-ion Battery“. In 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC). IEEE, 2021. http://dx.doi.org/10.1109/icesc51422.2021.9532787.
Der volle Inhalt der QuelleYi, Yong, Yingyue Sun, Wenxi Tang und Liming Wang. „Temperature sensitivity of voltage-current characteristics for positive corona in coaxial cylindrical electrode“. In 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). IEEE, 2018. http://dx.doi.org/10.1109/icpadm.2018.8401257.
Der volle Inhalt der QuelleK., Mohanapriya, und Neetu Jha. „Porous graphene sheets as positive electrode material for supercapacitor – battery hybrid energy storage devices“. In DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980398.
Der volle Inhalt der QuelleHuang, Hong, Tim Holme und Fritz B. Prinz. „Increased Cathodic Kinetics in IT-SOFCs by Inserting Highly-Conductive Nanocrystalline Materials“. In ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65123.
Der volle Inhalt der QuelleDi Lillo, Luigi, Wolfram Raither, Claudio Di Fratta, Andrea Bergamini und Paolo Ermanni. „Mechanical Characterization of Electro-Bonded Laminates“. In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-8031.
Der volle Inhalt der QuelleBanerjee, Soumik, Sohail Murad und Ishwar K. Puri. „Carbon Nanotubes as Nano-Pumps: A Molecular Dynamics Investigation“. In ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2006. http://dx.doi.org/10.1115/icnmm2006-96206.
Der volle Inhalt der QuelleHadinata, Philip C., und John A. Main. „Strain and Current Responses During Electron Flux Excitation of Piezoelectric Ceramics“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39013.
Der volle Inhalt der QuelleKumar, P. Jeevan, K. Jayanth Babu, O. M. Hussain, Dinesh K. Aswal und Anil K. Debnath. „Electrochemical Performance of rf Magnetron Sputtered LiCoO[sub 2] Thin Film Positive Electrodes“. In INTERNATIONAL CONFERENCE ON PHYSICS OF EMERGING FUNCTIONAL MATERIALS (PEFM-2010). AIP, 2010. http://dx.doi.org/10.1063/1.3530498.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Materials for positive electrode"
Wilcox, James Douglas. Studies on two classes of positive electrode materials for lithium-ion batteries. Office of Scientific and Technical Information (OSTI), Dezember 2008. http://dx.doi.org/10.2172/983034.
Der volle Inhalt der QuelleDunn, Bruce. Vanadium Oxide Aerogel Electrode Materials. Fort Belvoir, VA: Defense Technical Information Center, März 2001. http://dx.doi.org/10.21236/ada389142.
Der volle Inhalt der QuelleZimmerman, Albert H. Nickel Hydrogen Cell Positive-Electrode Studies: Cobalt Segregation in Reducing Environments,. Fort Belvoir, VA: Defense Technical Information Center, Mai 1987. http://dx.doi.org/10.21236/ada193025.
Der volle Inhalt der QuelleDoeff, Marca M., Robert Kostecki, James Wilcox und Grace Lau. Conductive Carbon Coatings for Electrode Materials. Office of Scientific and Technical Information (OSTI), Juli 2007. http://dx.doi.org/10.2172/925590.
Der volle Inhalt der QuelleKeqin Huang. LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS. Office of Scientific and Technical Information (OSTI), April 2001. http://dx.doi.org/10.2172/823828.
Der volle Inhalt der QuelleKeqin Huang. LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/833626.
Der volle Inhalt der QuelleKeqin Huang. LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS. Office of Scientific and Technical Information (OSTI), April 2002. http://dx.doi.org/10.2172/823829.
Der volle Inhalt der QuelleHe, Lin. Synthesis, characterization and application of electrode materials. Office of Scientific and Technical Information (OSTI), Juli 1995. http://dx.doi.org/10.2172/108148.
Der volle Inhalt der QuelleSubban, Chinmayee. Developing Novel Electrode Materials for Aqueous Battery. Office of Scientific and Technical Information (OSTI), Januar 2020. http://dx.doi.org/10.2172/1593293.
Der volle Inhalt der QuelleFultz, Brent. The Science of Electrode Materials for Lithium Batteries. Office of Scientific and Technical Information (OSTI), März 2007. http://dx.doi.org/10.2172/900899.
Der volle Inhalt der Quelle