Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Material manufacturing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Material manufacturing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Material manufacturing"
Smith, Paul, und Allan Rennie. „Computer aided material selection for additive manufacturing materials“. Virtual and Physical Prototyping 5, Nr. 4 (08.11.2010): 209–13. http://dx.doi.org/10.1080/17452759.2010.527556.
Der volle Inhalt der QuelleEagar, Thomas W. „Materials Manufacturing“. MRS Bulletin 17, Nr. 4 (April 1992): 27–34. http://dx.doi.org/10.1557/s0883769400041038.
Der volle Inhalt der QuelleSHINTANI, Daisuke. „Material and Manufacturing Technology“. Journal of the Society of Materials Science, Japan 63, Nr. 11 (2014): 812. http://dx.doi.org/10.2472/jsms.63.812.
Der volle Inhalt der QuelleIKESHOJI, Toshi-Taka. „Multiple Material Additive Manufacturing“. JOURNAL OF THE JAPAN WELDING SOCIETY 88, Nr. 6 (2019): 489–96. http://dx.doi.org/10.2207/jjws.88.489.
Der volle Inhalt der QuelleMoslah Salman, Mohammed, und Mohammad Zohair Yousif. „MANUFACTURING GREEN CEMENTING MATERIAL“. Journal of Engineering and Sustainable Development 23, Nr. 06 (01.11.2019): 55–69. http://dx.doi.org/10.31272/jeasd.23.6.5.
Der volle Inhalt der QuelleJames, T. „Material ambitions [aerospace manufacturing]“. Engineering & Technology 3, Nr. 11 (21.06.2008): 66–69. http://dx.doi.org/10.1049/et:20081109.
Der volle Inhalt der QuelleJiayong, Yan, Liu Baorong, Yang Kai, Liu Hanliang, Zhang Bin, Zhang Lixin und Wang Cunyi. „Research of Materials and Manufacturing Technology System for On-orbit Manufacturing“. E3S Web of Conferences 385 (2023): 01015. http://dx.doi.org/10.1051/e3sconf/202338501015.
Der volle Inhalt der QuelleBarnett, Eric, und Clément Gosselin. „Weak support material techniques for alternative additive manufacturing materials“. Additive Manufacturing 8 (Oktober 2015): 95–104. http://dx.doi.org/10.1016/j.addma.2015.06.002.
Der volle Inhalt der QuelleP., KOŠŤÁL, MUDRIKOVÁ A. und VELÍŠEK K. „MATERIAL FLOW IN FLEXIBLE MANUFACTURING“. International Conference on Applied Mechanics and Mechanical Engineering 13, Nr. 13 (01.05.2008): 111–20. http://dx.doi.org/10.21608/amme.2008.39731.
Der volle Inhalt der QuelleChang, Sheng-Hung, Wen-Liang Lee und Rong-Kwei Li. „Manufacturing bill-of-material planning“. Production Planning & Control 8, Nr. 5 (Januar 1997): 437–50. http://dx.doi.org/10.1080/095372897235019.
Der volle Inhalt der QuelleDissertationen zum Thema "Material manufacturing"
Braconnier, Daniel J. „Materials Informatics Approach to Material Extrusion Additive Manufacturing“. Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/204.
Der volle Inhalt der QuelleShahbazi, Sasha. „MATERIAL EFFICIENCY MANAGEMENT IN MANUFACTURING“. Licentiate thesis, Mälardalens högskola, Innovation och produktrealisering, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-28004.
Der volle Inhalt der QuelleMEMIMAN
INNOFACTURE - innovative manufacturing development
Wan, Yen-Tai. „Material transport system design in manufacturing“. Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-03282006-231022/.
Der volle Inhalt der QuelleDr. Yih-Long Chang, Committee Member ; Dr. Martin Savelsbergh, Committee Member ; Dr. Leon McGinnis, Committee Co-Chair ; Dr. Gunter Sharp, Committee Chair ; Dr. Doug Bodner, Committee Member ; Dr. Joel Sokol, Committee Member.
Goel, Anjali 1978. „Economics of composite material manufacturing equipment“. Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/31096.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 43).
Composite materials are used for products needing high strength-to-weight ratios and good corrosion resistance. For these materials, various composite manufacturing processes have been developed such as Automated Tow Placement, Braiding, Diaphragm Forming, Resin Transfer Molding, Pultrusion, Autoclave Curing and Hand Lay Up. The aim of this paper is to examine the equipment used for these seven processes and to produce a cost analysis for each of the processes equipment. Since many of these processes are relatively new or are fairly costly and specified to the customers need, much of the equipment is custom made to meet the requirements of the part being produced. Current pricing information for individual custom-built machines, as well as standard machinery has been provided here.
by Anjali Goel.
S.B.
Mullen, T. D. „Material flow control in complex manufacturing systems“. Thesis, University of Strathclyde, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360792.
Der volle Inhalt der QuelleKarmakar, Mattias. „Additive Manufacturing Stainless Steel for Space Application“. Thesis, Luleå tekniska universitet, Materialvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-72901.
Der volle Inhalt der QuelleZhu, Wenkai, und 朱文凱. „Concurrent toolpath planning for multi-material layered manufacturing“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42841446.
Der volle Inhalt der QuelleZhu, Wenkai. „Concurrent toolpath planning for multi-material layered manufacturing“. Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B42841446.
Der volle Inhalt der QuelleEk, Kristofer. „Additivt tillverkat material“. Thesis, KTH, Maskinkonstruktion (Inst.), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-152230.
Der volle Inhalt der QuelleAbstractThis project treats Additive Manufacturing (AM) for metallic material and the question if it is suitable to be used in the aeronautics industry. AM is a relatively new production method where objects are built up layer by layer from a computer model. The art of AM allows in many cases more design freedoms that enables production of more weight optimized and functional articles. Other advantages are material savings and shorter lead times which have a large economic value.An extensive literature study has been made to evaluate all techniques on the market and characterize what separates the different processes. Also machine performance and material quality is evaluated, and advantages and disadvantages are listed for each technique. The techniques are widely separated in powder bed processes and material deposition processes. The powder bed techniques allow more design freedom while the material deposition techniques allow production of large articles. The most common energy source is laser that gives a harder and more brittle material than the alternative energy sources electron beam and electric arc.Two specific techniques have been selected to investigate further in this project. Electron Beam Melting (EBM) from Arcam and Wire fed plasma arc direct metal deposition from Norsk Titanium (NTiC). EBM is a powder bed process that can manufacture finished articles in limited size when no requirements are set on tolerances and surface roughness. NTiC uses a material deposition process with electric arc to melt wire material to a near-net shape. The latter method is very fast and can produce large articles, but have to be machined to finished shape. A material investigation have been made where Ti6Al4V-material from both techniques have been investigated in microscope and tested for hardness. For the EBM-material have also surface roughness and weldability been investigated since the limited building volume often requires welding. The materials have mechanical properties better than cast material with respect to strength and ductility, but not as good as wrought material. Test results show that the difference in mechanical properties in different directions is small, even though the material has an inhomogeneous macrostructure with columnar grains in the building direction. The EBM-material has a finer microstructure and a stronger material and, in combination with improved design freedom, this technique is most suitable for aerospace articles when the weldability is good and it is possible to surface work where requirements of the surface roughness are set.Keywords: Additive Manufacturing, Aeronautics, Titanium
Cheung, Hoi-hoi, und 張凱凱. „A multi-material virtual prototyping system“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B29727716.
Der volle Inhalt der QuelleBücher zum Thema "Material manufacturing"
Tanchoco, J. M. A. Material Flow Systems in Manufacturing. Boston, MA: Springer US, 1994.
Den vollen Inhalt der Quelle findenTanchoco, J. M. A., Hrsg. Material Flow Systems in Manufacturing. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2498-4.
Der volle Inhalt der QuelleTanchoco, Jose Mario Azaña, 1946-, Hrsg. Material flow systems in manufacturing. London: Chapman & Hall, 1994.
Den vollen Inhalt der Quelle findenNational SAMPE Technical Conference (17th 1985 Kiamesha Lake, N.Y.). Overcoming material boundaries. [Covina, Calif.]: Society for the Advancement of Material and Process Engineering, 1985.
Den vollen Inhalt der Quelle findenP, Stephens Matthew, Hrsg. Manufacturing facilities design and material handling. 3. Aufl. Columbus, Ohio: Pearson Prentice Hall, 2005.
Den vollen Inhalt der Quelle findenComposites manufacturing: Materials, product, and process engineering. Boca Raton, FL: CRC Press, 2002.
Den vollen Inhalt der Quelle findenSchey, John A. Material and process development for competitive manufacturing. Warrendale, Pa: Society of Automotive Engineers, 1988.
Den vollen Inhalt der Quelle findenKolarevic, Branko, und Kevin Klinger, Hrsg. Manufacturing Material Effects. Routledge, 2013. http://dx.doi.org/10.4324/9781315881171.
Der volle Inhalt der QuelleCheng, Wenlong, Li Lu und Xiao Hong Zhu. Material Engineering and Manufacturing. Trans Tech Publications, Limited, 2018.
Den vollen Inhalt der Quelle findenPishchik, Valerian, Elena R. Dobrovinskaya und Leonid A. Lytvynov. Sapphire: Material, Manufacturing, Applications. Springer, 2010.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Material manufacturing"
Gibson, Ian, David Rosen, Brent Stucker und Mahyar Khorasani. „Material Extrusion“. In Additive Manufacturing Technologies, 171–201. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56127-7_6.
Der volle Inhalt der QuelleGibson, Ian, David Rosen, Brent Stucker und Mahyar Khorasani. „Material Jetting“. In Additive Manufacturing Technologies, 203–35. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56127-7_7.
Der volle Inhalt der QuelleGibson, Ian, David Rosen und Brent Stucker. „Material Jetting“. In Additive Manufacturing Technologies, 175–203. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2113-3_7.
Der volle Inhalt der QuelleGreenwood, Nigel R. „Material Handling“. In Implementing Flexible Manufacturing Systems, 116–38. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-07959-9_6.
Der volle Inhalt der QuelleAwari, G. K., V. S. Kumbhar, R. B. Tirpude und S. W. Rajurkar. „Material Removal Processes“. In Automotive Manufacturing Processes, 173–222. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003367321-7.
Der volle Inhalt der QuelleGilani, Negar, Aleksandra Foerster und Nesma T. Aboulkhair. „Material Jetting“. In Springer Handbook of Additive Manufacturing, 371–87. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20752-5_23.
Der volle Inhalt der QuelleHaghighi, Azadeh. „Material Extrusion“. In Springer Handbook of Additive Manufacturing, 335–47. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20752-5_21.
Der volle Inhalt der QuelleSirotkin, O. S., und V. B. Litvinov. „Composite-material part joining“. In Composite Manufacturing Technology, 219–83. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-1268-0_6.
Der volle Inhalt der QuelleMalhotra, Vasdev. „Material Handling for AMS“. In Advanced Manufacturing Processes, 104–13. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003476375-10.
Der volle Inhalt der QuelleSrivastava, Manu, Sandeep Rathee, Sachin Maheshwari und T. K. Kundra. „Additive Manufacturing Processes Utilizing Material Jetting“. In Additive Manufacturing, 117–30. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351049382-9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Material manufacturing"
Tappan, Alexander, Robert Knepper und C. Lindsay. „Energetic Material Advanced Manufacturing.“ In Proposed for presentation at the 22nd Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter (SHOCK22) held July 10-15, 2022 in Anaheim, CA US. US DOE, 2022. http://dx.doi.org/10.2172/2003915.
Der volle Inhalt der QuelleTanaka, Fumiaki, Hiroshi Sato, Naoki Yoshii und Hidefumi Matsui. „Materials Informatics for Process and Material Co-optimization“. In 2018 International Symposium on Semiconductor Manufacturing (ISSM). IEEE, 2018. http://dx.doi.org/10.1109/issm.2018.8651132.
Der volle Inhalt der QuelleLeung, Yuen-Shan, Huachao Mao und Yong Chen. „Approximate Functionally Graded Materials for Multi-Material Additive Manufacturing“. In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-86391.
Der volle Inhalt der QuelleChoi, S. H., Y. Cai und H. Cheung. „Reconfigurable Multi-material Layered Manufacturing“. In CAD'14. CAD Solutions LLC, 2014. http://dx.doi.org/10.14733/cadconfp.2014.105-107.
Der volle Inhalt der QuelleChoi, S. H. „Reconfigurable Multi-material Layered Manufacturing“. In CAD'14 Hong Kong. CAD Solutions LLC, 2014. http://dx.doi.org/10.14733/cadconfp.2014.106-108.
Der volle Inhalt der QuelleZhao, Y. K., T. Y. Chen, S. W. Su und C. F. Wu. „Heat insulation performance for application of phenolic resin foam material as construction material“. In 5th International Conference on Responsive Manufacturing - Green Manufacturing (ICRM 2010). IET, 2010. http://dx.doi.org/10.1049/cp.2010.0450.
Der volle Inhalt der QuelleMaseeh, Fariborz. „MEMaterial: a new microelectronic material deposition tool“. In Microelectronic Manufacturing, herausgegeben von Anant G. Sabnis. SPIE, 1994. http://dx.doi.org/10.1117/12.186783.
Der volle Inhalt der QuelleGao, Yuan, Souha Toukabri, Ye Yu, Andreas Richter und Robert Kirchner. „Large area multi-material-multi-photon 3D printing with fast in-situ material replacement“. In Laser 3D Manufacturing VIII, herausgegeben von Henry Helvajian, Bo Gu und Hongqiang Chen. SPIE, 2021. http://dx.doi.org/10.1117/12.2583487.
Der volle Inhalt der QuelleLiu, Jinning, Sandeep Mehta, Sonu L. Daryanani und Che-Hoo Ng. „Material study of indium implant under channel doping conditions“. In Microelectronic Manufacturing, herausgegeben von David Burnett, Dirk Wristers und Toshiaki Tsuchiya. SPIE, 1998. http://dx.doi.org/10.1117/12.323967.
Der volle Inhalt der QuelleTaeusch, David R., und John M. Ruselowski. „Material Processing Laser Systems For Manufacturing“. In 1986 Quebec Symposium, herausgegeben von Walter W. Duley und Robert W. Weeks. SPIE, 1986. http://dx.doi.org/10.1117/12.938918.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Material manufacturing"
Paul, F. W. Robot Assisted Material Handling for Shirt Collar Manufacturing - Automated Shirt Collar Manufacturing. Fort Belvoir, VA: Defense Technical Information Center, Juni 1992. http://dx.doi.org/10.21236/ada268284.
Der volle Inhalt der QuelleDoelle, Klaus. New Manufacturing Method for Paper Filler and Fiber Material. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1091089.
Der volle Inhalt der QuelleMaddux, Gary A. Diminishing Manufacturing Sources and Material Shortages Research and Support. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1999. http://dx.doi.org/10.21236/ada374459.
Der volle Inhalt der QuelleWatts, Alden. Towards understanding material characteristics through the additive manufacturing arc. Office of Scientific and Technical Information (OSTI), Juli 2019. http://dx.doi.org/10.2172/1593314.
Der volle Inhalt der QuelleMURPH, SIMONA. MATERIAL DEVELOPMENTS FOR 3D/4D ADDITIVE MANUFACTURING (AM) TECHNOLOGIES. Office of Scientific and Technical Information (OSTI), Oktober 2020. http://dx.doi.org/10.2172/1676417.
Der volle Inhalt der QuelleSESSIONS, HENRY. MATERIAL DEVELOPMENTS FOR 3D/4D ADDITIVE MANUFACTURING (AM) TECHNOLOGIES. Office of Scientific and Technical Information (OSTI), Oktober 2021. http://dx.doi.org/10.2172/1838344.
Der volle Inhalt der QuelleChappell, Mark, Wu-Sheng Shih, Cynthia Price, Rishi Patel, Daniel Janzen, John Bledsoe, Kay Mangelson et al. Environmental life cycle assessment on CNTRENE® 1030 material and CNT based sensors. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42086.
Der volle Inhalt der QuelleO'Connor, Christopher. Navy Additive Manufacturing: Policy Analysis for Future DLA Material Support. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2014. http://dx.doi.org/10.21236/ada620841.
Der volle Inhalt der QuelleDuty, Chad E., Tom Drye und Alan Franc. Material Development for Tooling Applications Using Big Area Additive Manufacturing (BAAM). Office of Scientific and Technical Information (OSTI), März 2015. http://dx.doi.org/10.2172/1209207.
Der volle Inhalt der QuelleSalzbrenner, Bradley, Brad Boyce, Bradley Howell Jared, Jeffrey Rodelas und John Robert Laing. Defect Characterization for Material Assurance in Metal Additive Manufacturing (FY15-0664). Office of Scientific and Technical Information (OSTI), Februar 2016. http://dx.doi.org/10.2172/1237892.
Der volle Inhalt der Quelle