Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Massively Parallel Reporter Assay“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Massively Parallel Reporter Assay" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Massively Parallel Reporter Assay"
Inoue, Fumitaka, und Nadav Ahituv. „Decoding enhancers using massively parallel reporter assays“. Genomics 106, Nr. 3 (September 2015): 159–64. http://dx.doi.org/10.1016/j.ygeno.2015.06.005.
Der volle Inhalt der QuelleTrauernicht, Max, Miguel Martinez-Ara und Bas van Steensel. „Deciphering Gene Regulation Using Massively Parallel Reporter Assays“. Trends in Biochemical Sciences 45, Nr. 1 (Januar 2020): 90–91. http://dx.doi.org/10.1016/j.tibs.2019.10.006.
Der volle Inhalt der QuelleAvramopoulos, Dimitrios, Leslie Myint, Kasper Hansen, Ruihua Wang, Leandros Boukas und Loyal Goff. „SA131A MASSIVELY PARALLEL REPORTER ASSAY FOR VARIANTS ASSOCIATED WITH SCHIZOPHRENIA AND ALZHEIMER'S DISEASE“. European Neuropsychopharmacology 29 (2019): S1260—S1261. http://dx.doi.org/10.1016/j.euroneuro.2018.08.353.
Der volle Inhalt der QuelleGeorgakopoulos-Soares, Ilias, Naman Jain, Jesse M. Gray und Martin Hemberg. „MPRAnator: a web-based tool for the design of massively parallel reporter assay experiments“. Bioinformatics 33, Nr. 1 (06.09.2016): 137–38. http://dx.doi.org/10.1093/bioinformatics/btw584.
Der volle Inhalt der QuelleLee, Dongwon, Ashish Kapoor, Changhee Lee, Michael Mudgett, Michael A. Beer und Aravinda Chakravarti. „Sequence-based correction of barcode bias in massively parallel reporter assays“. Genome Research 31, Nr. 9 (20.07.2021): 1638–45. http://dx.doi.org/10.1101/gr.268599.120.
Der volle Inhalt der QuelleHughes, Andrew E. O., Connie A. Myers und Joseph C. Corbo. „A massively parallel reporter assay reveals context-dependent activity of homeodomain binding sites in vivo“. Genome Research 28, Nr. 10 (29.08.2018): 1520–31. http://dx.doi.org/10.1101/gr.231886.117.
Der volle Inhalt der QuelleHammelman, Jennifer, Konstantin Krismer, Budhaditya Banerjee, David K. Gifford und Richard I. Sherwood. „Identification of determinants of differential chromatin accessibility through a massively parallel genome-integrated reporter assay“. Genome Research 30, Nr. 10 (24.09.2020): 1468–80. http://dx.doi.org/10.1101/gr.263228.120.
Der volle Inhalt der QuelleMaricque, Brett B., Hemangi G. Chaudhari und Barak A. Cohen. „A massively parallel reporter assay dissects the influence of chromatin structure on cis-regulatory activity“. Nature Biotechnology 37, Nr. 1 (19.11.2018): 90–95. http://dx.doi.org/10.1038/nbt.4285.
Der volle Inhalt der QuelleKalita, Cynthia A., Gregory A. Moyerbrailean, Christopher Brown, Xiaoquan Wen, Francesca Luca und Roger Pique-Regi. „QuASAR-MPRA: accurate allele-specific analysis for massively parallel reporter assays“. Bioinformatics 34, Nr. 5 (22.09.2017): 787–94. http://dx.doi.org/10.1093/bioinformatics/btx598.
Der volle Inhalt der QuelleNiroula, Abhishek, Ram Ajore und Björn Nilsson. „MPRAscore: robust and non-parametric analysis of massively parallel reporter assays“. Bioinformatics 35, Nr. 24 (29.07.2019): 5351–53. http://dx.doi.org/10.1093/bioinformatics/btz591.
Der volle Inhalt der QuelleDissertationen zum Thema "Massively Parallel Reporter Assay"
Samenuk, Thomas. „Incorporation of Organ-Specific MicroRNA Target Sequences to Improve Gene Therapy Specificity:“. Thesis, Boston College, 2021. http://hdl.handle.net/2345/bc-ir:109174.
Der volle Inhalt der QuelleThe aim of this study was to utilize a massively parallel reporter assay (MPRA) to identify organ-specific microRNA (miRNA) target sequences to refine the timing and expression of transgene expression for gene therapy. We previously had developed a cardiac gene therapy for Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) using a systemically delivered adeno-associated virus (AAV9) vector. We hypothesized that incorporation of organ specific miRNA target sites into our vector construct could improve our therapy’s tissue specificity due to the ability of miRNAs to silence transgene expression. Initially, we attempted to incorporate mir-124 target sequences into our vector to detarget the brain. Although these initial attempts were unsuccessful, the study allowed us to develop a protocol to test the effectiveness of miRNA target sequences. Thereafter, we developed a method to screen thousands of putative miRNA target sequences simultaneously. In this study, target sequences of miRNAs specific to the heart, brain and liver were incorporated into a plasmid library. This plasmid library was subsequently made into AAV and injected into mice from a CPVT transgenic line. Total DNA and RNA was later extracted from the target organs, converted into genomic DNA (gDNA) and complementary DNA (cDNA) libraries respectively, and sent for amplicon sequencing. We analyzed the results using Comparative Microbiome Analysis 2.0 software (CoMA) and a custom python script to count the occurrence of each specified barcode per sample. In doing so, we showed that the miRNA suppression mechanism is not only effective but also organ specific. Furthermore, we developed a second script to create a combinatorial library from a set list of miRNA target sequences enabling us to efficiently test thousands of target sequence combinations at once. In doing so, we will be able to identify effective miRNA target sequence combinations to further improve gene therapy specificity
Thesis (BS) — Boston College, 2021
Submitted to: Boston College. College of Arts and Sciences
Discipline: Departmental Honors
Discipline: Biology
FitzPatrick, Vincent Drury. „Predicting Autonomous Promoter Activity Based on Genome-wide Modeling of Massively Parallel Reporter Data“. Thesis, 2020. https://doi.org/10.7916/d8-qct0-z873.
Der volle Inhalt der QuelleBuchteile zum Thema "Massively Parallel Reporter Assay"
Oh, Inez Y., und Shiming Chen. „High-Throughput Analysis of Retinal Cis-Regulatory Networks by Massively Parallel Reporter Assays“. In Retinal Degenerative Diseases, 359–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27378-1_59.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Massively Parallel Reporter Assay"
Choi, Jiyeon, Tongwu Zhang, Michael Kovacs, Mai Xu, Nghi Lam, Leandro Colli und Kevin Brown. „Abstract 1317: Simultaneous identification of candidate melanoma risk variants using massively parallel reporter assay“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-1317.
Der volle Inhalt der Quelle