Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Mass transfer“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Mass transfer" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Mass transfer"
Gekas, Vassilis. „Mass transfer modeling“. Journal of Food Engineering 49, Nr. 2-3 (August 2001): 97–102. http://dx.doi.org/10.1016/s0260-8774(00)00223-5.
Der volle Inhalt der QuelleWesselingh, J. A. „Multicomponent Mass Transfer“. Chemical Engineering Journal and the Biochemical Engineering Journal 60, Nr. 1-3 (Dezember 1995): 177–79. http://dx.doi.org/10.1016/0923-0467(96)80015-7.
Der volle Inhalt der QuelleGarofalo, Paolo S. „Mass transfer during gold precipitation within a vertically extensive vein network (Sigma deposit - Abitibi greenstone belt - Canada). Part II. Mass transfer calculations“. European Journal of Mineralogy 16, Nr. 5 (18.10.2004): 761–76. http://dx.doi.org/10.1127/0935-1221/2004/0016-0761.
Der volle Inhalt der QuelleNakhman, A. D., und Yu V. Rodionov. „Generalized Solution of the Heat and Mass Transfer Problem“. Advanced Materials & Technologies, Nr. 4 (2017): 056–63. http://dx.doi.org/10.17277/amt.2017.04.pp.056-063.
Der volle Inhalt der QuelleHosovkyi, Roman, Diana Kindzera und Volodymyr Atamanyuk. „Diffusive Mass Transfer during Drying of Grinded Sunflower Stalks“. Chemistry & Chemical Technology 10, Nr. 4 (15.09.2016): 459–63. http://dx.doi.org/10.23939/chcht10.04.459.
Der volle Inhalt der QuelleWogelius, Roy A., Peter M. Morris, Michael A. Kertesz, Emmanuelle Chardon, Alexander I. R. Stark, Michele Warren und James R. Brydie. „Mineral surface reactivity and mass transfer in environmental mineralogy“. European Journal of Mineralogy 19, Nr. 3 (02.07.2007): 297–307. http://dx.doi.org/10.1127/0935-1221/2007/0019-1727.
Der volle Inhalt der QuelleCoulson, J. M., J. F. Richardson, J. R. Backhurst und J. H. Harker. „Fluid flow, heat transfer and mass transfer“. Filtration & Separation 33, Nr. 2 (Februar 1996): 102. http://dx.doi.org/10.1016/s0015-1882(96)90353-5.
Der volle Inhalt der QuelleWu, Kinwah. „Mass Transfer in Low Mass Close Binaries“. International Astronomical Union Colloquium 163 (1997): 283–88. http://dx.doi.org/10.1017/s0252921100042755.
Der volle Inhalt der QuelleKobayashi, Takeshi. „Immobilization and mass transfer.“ Japan journal of water pollution research 9, Nr. 11 (1986): 696–98. http://dx.doi.org/10.2965/jswe1978.9.696.
Der volle Inhalt der QuelleCOLLINS II, G. W., J. C. BROWN und J. P. CASSINELLI. „Dynamical mass-transfer paradox“. Nature 347, Nr. 6292 (Oktober 1990): 433. http://dx.doi.org/10.1038/347433a0.
Der volle Inhalt der QuelleDissertationen zum Thema "Mass transfer"
Springer, Pieter Ariaan Martijn. „Mass transfer effects in distillation“. [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2004. http://dare.uva.nl/document/88084.
Der volle Inhalt der QuelleMcAleavey, Gervase. „Mass transfer studies in fermentation“. Thesis, Queen's University Belfast, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356899.
Der volle Inhalt der QuelleErasmus, Andre Brink. „Mass transfer in structured packing“. Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16045.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Structured packing is a popular column internal for both distillation and absorption unit operations. This is due to the excellent mass transfer characteristics and low pressure drop that it offers compared to random packing or trays. The main disadvantage is the lack in reliable models to describe the mass transfer characteristics of this type of packing. The recent development of the non-equilibrium model or rate based modelling approach has also emphasized the need for accurate hydraulic and efficiency models for sheet metal structured packing. The main focus of this study was to develop an accurate model for the mass transfer efficiency of Flexipac 350Y using a number of experimental and modelling techniques. Efficiency is however closely related to hydraulic capacity. Before attempting to measure and model the efficiency of Flexipac 350Y, the ability of existing published models to accurately describe the hydraulic capacity of this packing was tested. Holdup and pressure drop were measured using air/water and air/heavy paraffin as test systems. All experiments were performed on pilot plant scale 200mm ID glass columns. Satisfactory results were obtained with most of the models for determining the loading point and pressure drop for the air/water test system. All of the models tested predicted a conservative dependency of capacity on liquid viscosity for the air/paraffin test system. Efficiency and pressure drop were measured using the chlorobenzene/ethylbenzene test systems under conditions of total reflux in a 200mm ID glass column. Widely differing results were however obtained with the different models for the efficiency of Flexipac 350Y. Experiments were subsequently designed and performed to measure and correlate the vapour phase mass transfer coefficient and the effective surface area of Flexipac 350Y independently. The vapour phase mass transfer coefficient was measured and correlated by subliming naphthalene into air from coatings applied to specially fabricated 350Y gauze structured packing. The use of computational fluid dynamics (CFD) to model the vapour phase mass transfer coefficient is also demonstrated. The effective surface area for vapour phase mass transfer was measured with the chemical technique. The specific absorption rate of CO2 into monoethanolamine (MEA) using n-propanol as solvent was determined in a wetted-wall column and used to determine the effective surface area of Flexipac 350Y on pilot plant scale (200mm ID glass column). The efficiency of Flexipac 350Y could be modelled within an accuracy of 9% when using the correlations developed in this study and ignoringliquid phase resistance to mass transfer for the chlorobenzene/ethylbenzene test system under conditions of total reflux. The capacity and efficiency of the new generation high capacity packing Flexipac 350Y HC was also measured and compared with that of the normal capacity packing Flexipac 350Y. An increase in capacity of 20% was observed for the HC packing for the air/water system and 4% for the air/heavy paraffin system compared with the normal packing. For the binary total reflux distillation the increase in capacity varied between 8% and 15% depending on the column pressure. The gain in capacity was at the expense of a loss in efficiency of around 3% in the preloading region.
AFRIKAANSE OPSOMMING: Gestruktureerde pakking is 'n populêre pakkingsmateriaal en word algemeen gebruik in distillasie en absorpsie kolomme. Dit is hoofsaaklik as gevolg van die goeie massa-oordragseienskappe en lae drukval wat dit bied in vergelyking met 'random' pakking en plate. The hoof nadeel is egter die tekort aan akkurate modelle om die massa-oordrags eienskappe te bepaal. Om modelle te kan gebruik waar die massaoordragstempo direk gebruik word om gepakte hoogte te bepaal, word akkurate kapasiteits- en effektiwiteitsmodelle vir gestruktureerde plaatmetaalpakking benodig. Die hoof doelwit van hierdie studie was om 'n akkurate model te ontwikkel vir die massa-oordragseffektiwiteit van die plaat metaal pakking Flexipac 350Y deur gebruik te maak van verskillende eksperimentele- en modelleringstegnieke. Effektiwiteit is egter direk gekoppel aan hidroliese kapasiteit. Bestaande modelle in die literatuur is eers getoets om te bepaal of hulle die hidroliese kapasitiet van Flexipac 350Y akkuraat kan voorspel. Vir die doel is vloeistofterughou en drukval gemeet deur gebruik te maak van die sisteme lug/water en lug/swaar parafien. Alle eksperimente is in loodsaanlegskaal 200mm ID glaskolomme uitgevoer. Meeste van die modelle was relatief akkuraat in hulle berekening van die ladingspunt en die drukval vir die lug/water toets sisteem, maar was konsertief in voorspellings van die groothede vir die lug/swaar parafien sisteem. Effektiwiteit en drukval was gemeet deur gebruik te maak van die binêre toetssisteem chlorobenseen/etielbenseen onder totale terugvloei kondisies in 'n 200mm ID glaskolom. Daar is 'n groot verskil in die effektiwiteitsvoorspelling deur die verskillende modelle. Vervolgens is eksperimente ontwerp en uitgevoer om die dampfase massaoordragskoeffisiënt en die effektiewe oppervlakarea vir Flexipac 350Y onafhanklik te meet en te korreleer. Die dampfase massaoordragskoeffisient is gemeet en gekorreleer deur naftaleen te sublimeer vanaf spesiaal vervaardigde 350Y gestruktureerde pakking van metaalgaas. Die gebruik van numeriese vloeimeganika (CFD) om die dampfase massaoordragskoeffisient te bereken word gedemonstreer. Die effektiewe oppervlakarea vir dampfase massaoordrag is bepaal deur van 'n chemiese metode gebruik te maak. Die spesifieke absorpsietempo van CO2 in monoetanolamien (MEA) met n-propanol as oplosmiddel is gemeet in a benatte wand kolom en gebruik om die effektiewe oppervlakarea van Flexipac 350Y te bepaal op loodsaanlegskaal (200mm ID). Die effektiwiteit van Flexipac 350Y kon met 'n akkuraatheid van binne 9%gemodelleer word deur vloeistoffaseweerstand te ignoreer en van die korrelasies gebruik te maak wat in hierdie studie ontwikkel is. Die effektiwiteit en kapasiteit van die nuwe generasie hoë kapasiteit pakking Flexipac 350Y HC is ook gemeet en vergelyk met die normale kapasiteit pakking Flexipac 350Y. 'n Verhoging in kapsiteit van 20% is gemeet vir die HC pakking in vergelyking met die normale kapasiteit pakking vir die lug/water sisteem en 'n 4% verhoging in kapasiteit vir die lug/swaar parafien sisteem. Die verhoging in kapasiteit het gevarieër tussen 8% en 14% in die binêre totale terugvloei distillasie toetse en was afhanklik van die kolom druk. Die verhoging in kapasiteit was ten koste van 'n verlaging in effektiwiteit van ongeveer 3% onderkant die ladingspunt.
Zhao, Xiaomin. „Formaldehyde mass-transfer properties study“. Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/51597.
Der volle Inhalt der QuelleMaster of Science
Xu, Feishi. „Bubble hydrodynamics and mass transfer in complex media“. Thesis, Toulouse, INSA, 2019. http://www.theses.fr/2019ISAT0003.
Der volle Inhalt der QuelleThe knowledge on the hydrodynamic property and mass transfer of bubbles is important since it will give guidelines for selecting the operation condition and for reactor design in such processes. For this purpose, this PhD manuscript has implemented an experimental investigation of single air bubbles rising in various polymer solutions (Breox, Polyacrylamide (PAAm) and Xanthan gum) which can simulate the property of the sewage. The works can divided into three parts: Firstly, with a review of the current visualization techniques for mass transfer, three techniques have been tested for air bubble (equivalent diameter ≈ 1 mm) rising in water including traditional Planar Laser Induced Fluorescent (PLIF, dye: fluorescent resorufin), Fluorescent quenching technique (PLIF with Inhibition, dye: ruthenium complex) and colorimetric techniques (dye: pink resorufin), respectively. Secondly, based on images captured by a high speed camera, the hydrodynamics of the bubble single air bubbles (equivalent diameters: 0.7-7 mm) rising in the polymer solutions (PAAm and Xanthan) have been investigated including the bubble velocity, trajectory and bubble shape. Finally, based on PLIF-I technique, the mass transfer and diffusion phenomena in the wake of single air bubbles (equivalent diameter ≈ 1 mm) rising in various aqueous polymer solutions (PAAm and Breox) are investigated
Raison, Christian E. „Mass transfer in aerated vibrated beds“. Thesis, This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-03032009-040719/.
Der volle Inhalt der QuelleVasan, S. S. „Analysis of mass transfer in ultrafiltration“. Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424738.
Der volle Inhalt der QuelleHanif, Mohammed. „Mass transfer studies in solvent extraction“. Thesis, Teesside University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328022.
Der volle Inhalt der QuelleDUARTE, LUIZ GUSTAVO DA CRUZ. „MASS TRANSFER TO SWIRL IMPINGING JETS“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1994. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24868@1.
Der volle Inhalt der QuelleThe present work is an experimental study of the mass transfer characteristics of a swirling jet impinging on a flat plate. The main objective of the investigation was to determine the influence of a circumferential velocity component (the swirl component) on the local and average mass transfer coefficients at the plate surface. The dimensionless parameters investigated were the jet Reynolds number, the jet-to-plate distance, and the strength of the swirl flow given by the swirl number. Mass transfer coefficients were obtained utilizing the naphthalene sublimation technique. The local coefficients were determined employing a computerized coodinate table which allowed a detailed study of the effects of the presence of the swirl component. Average coefficients were determined independently through precision weighing, and displayed excellent agreement with the integrated local coefficients. The results demonstrated that the presence of the swirl component decreases the mass transfer coefficients, when compared with the non-swirl case. Flow visualization experiments were conducted utilizing the oil-lamp black technique. The results revealed regions of reverse flow at the stagnation zone for high values of the swirl number.
Kumar, Anil. „Hydrodynamics and mass transfer in Kühni extractor /“. [S.l.] : [s.n.], 1985. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=7806.
Der volle Inhalt der QuelleBücher zum Thema "Mass transfer"
R, Krishna, Hrsg. Mass transfer. New York: E. Horwood, 1990.
Den vollen Inhalt der Quelle findenF, Mills Anthony, Hrsg. Mass transfer. Upper Saddle River, N.J: Prentice Hall, 2001.
Den vollen Inhalt der Quelle findenR, Krishna, Hrsg. Multicomponent mass transfer. New York: Wiley, 1993.
Den vollen Inhalt der Quelle findenBaehr, Hans Dieter, und Karl Stephan. Heat and Mass Transfer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-29527-5.
Der volle Inhalt der QuelleKarwa, Rajendra. Heat and Mass Transfer. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3988-6.
Der volle Inhalt der QuelleBaehr, Hans Dieter, und Karl Stephan. Heat and Mass Transfer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20021-2.
Der volle Inhalt der QuelleKarwa, Rajendra. Heat and Mass Transfer. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-1557-1.
Der volle Inhalt der QuelleBaehr, Hans Dieter, und Karl Stephan. Heat and Mass Transfer. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03659-4.
Der volle Inhalt der QuelleMills, Anthony F. Heat and mass transfer. Burr Ridge, Ill: Irwin, 1995.
Den vollen Inhalt der Quelle findenCatchpole, Owen John. Packed bed mass transfer. Birmingham: University of Birmingham, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Mass transfer"
Lichtner, Peter C. „Mass Transfer“. In Encyclopedia of Earth Sciences Series, 1–4. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39193-9_68-1.
Der volle Inhalt der QuelleLichtner, Peter C. „Mass Transfer“. In Encyclopedia of Earth Sciences Series, 1–4. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_68-2.
Der volle Inhalt der QuelleLichtner, Peter C. „Mass Transfer“. In Encyclopedia of Earth Sciences Series, 892–95. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_68.
Der volle Inhalt der QuelleNielsen, Jens, John Villadsen und Gunnar Lidén. „Mass Transfer“. In Bioreaction Engineering Principles, 423–75. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0767-3_10.
Der volle Inhalt der QuelleKarwa, Rajendra. „Mass Transfer“. In Heat and Mass Transfer, 929–48. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1557-1_15.
Der volle Inhalt der QuelleBrenn, Günter. „Mass Transfer“. In Mathematical Engineering, 239–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-51423-8_9.
Der volle Inhalt der QuelleSmith, P. G. „Mass Transfer“. In Food Science Text Series, 193–219. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7662-8_8.
Der volle Inhalt der QuelleWright, Dennis. „Mass Transfer“. In Basic Programs for Chemical Engineers, 96–135. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4121-2_4.
Der volle Inhalt der QuelleZohuri, Bahman, und Nima Fathi. „Mass Transfer“. In Thermal-Hydraulic Analysis of Nuclear Reactors, 311–24. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17434-1_11.
Der volle Inhalt der QuelleKarwa, Rajendra. „Mass Transfer“. In Heat and Mass Transfer, 1041–66. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3988-6_15.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Mass transfer"
Gabitto, Jorge F. „Matrix-Fracture Mass Transfer“. In SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers, 1998. http://dx.doi.org/10.2118/39702-ms.
Der volle Inhalt der QuelleGoldstein, Richard J. „Mass Transfer Systems for Simulating Heat Transfer Processes“. In Advanced Course in Measurement Techniques in Heat and MassTransfer. Connecticut: Begellhouse, 1985. http://dx.doi.org/10.1615/ichmt.1985.advcoursemeastechheatmasstransf.180.
Der volle Inhalt der QuelleLoomis, G. G. „CORE THERMAL RESPONSE AND MASS DISTRIBUTION DURING VESSEL MASS DEPLETION ASSOCIATED WITH A SBLOCA“. In International Heat Transfer Conference 8. Connecticut: Begellhouse, 1986. http://dx.doi.org/10.1615/ihtc8.3400.
Der volle Inhalt der QuelleLi, Jiayi, Bingqing Luo und Zhaojun Liu. „Micro-LED Mass Transfer Technologies“. In 2020 21st International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2020. http://dx.doi.org/10.1109/icept50128.2020.9201923.
Der volle Inhalt der QuelleSemiat, R. „DESALINATION: HEAT VERSUS MASS TRANSFER“. In Annals of the Assembly for International Heat Transfer Conference 13. Begell House Inc., 2006. http://dx.doi.org/10.1615/ihtc13.p30.250.
Der volle Inhalt der Quelle„Thermo-solutal convection, Mass transfer“. In CONV-09. Proceedings of International Symposium on Convective Heat and Mass Transfer in Sustainable Energy. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/ichmt.2009.conv.660.
Der volle Inhalt der QuelleBobrick, Alexey. „Mass transfer in compact binaries“. In Gamma-Ray Bursts 2012 Conference. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.152.0111.
Der volle Inhalt der QuelleCavanagh, L., Y. Li, T. Evans, John Lucas und Geoffrey M. Evans. „Heat Transfer Modelling of Submerged Gas Injection into a Molten Metal Bath“. In Heat and Mass Transfer Australasia. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/978-1-56700-099-3.430.
Der volle Inhalt der QuelleParpais, Sylvain, Jean Pierre Bertoglio und Andre Laporta. „A Spectral Model for Inhomogeneous Turbulence Applied to the Prediction of Turbulent Heat Flux and Temperature Spectra“. In Heat and Mass Transfer Australasia. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/978-1-56700-099-3.580.
Der volle Inhalt der QuelleOzmen, L., Timothy A. G. Langrish und E. M. Gipps. „SPRAY DRYING PHARMACEUTICAL PRODUCTS FOR NASAL DELIVERY: The Effects of Feed Solution Properties and Operating Conditions on Particle Size and Density“. In Heat and Mass Transfer Australasia. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/978-1-56700-099-3.500.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Mass transfer"
Pigford, T. H., und P. L. Chambre. Mass transfer in a salt repository. Office of Scientific and Technical Information (OSTI), Mai 1985. http://dx.doi.org/10.2172/6381376.
Der volle Inhalt der QuelleSingh, Rajesh K., Jie Bao, Chao Wang und Zhijie Xu. Device-scale CFD study for mass transfer coefficient and effective mass transfer area in packed column. Office of Scientific and Technical Information (OSTI), Oktober 2018. http://dx.doi.org/10.2172/1492447.
Der volle Inhalt der QuelleChesna, J. C. Mass Transfer in 12-CM Centrifugal Contactors. Office of Scientific and Technical Information (OSTI), Juni 2001. http://dx.doi.org/10.2172/782822.
Der volle Inhalt der QuelleWatson, Thomas B. Proton Transfer Time-of-Flight Mass Spectrometer. Office of Scientific and Technical Information (OSTI), März 2016. http://dx.doi.org/10.2172/1251396.
Der volle Inhalt der QuelleSutija, D. P. Micro-scale mass-transfer variations during electrodeposition. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/5208259.
Der volle Inhalt der QuelleDay-Lewis, Frederick, Kamini Singha, Roy Haggerty, Tim Johnson, Andrew Binley und John Lane. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters. Office of Scientific and Technical Information (OSTI), Januar 2014. http://dx.doi.org/10.2172/1114652.
Der volle Inhalt der QuelleZyvoloski, G., Z. Dash und S. Kelkar. FEHM: finite element heat and mass transfer code. Office of Scientific and Technical Information (OSTI), März 1988. http://dx.doi.org/10.2172/5495517.
Der volle Inhalt der QuelleDay-Lewis, Frederick David, Kamini Singha, Timothy C. Johnson, Roy Haggerty, Andrew Binley und John W. Lane. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1164392.
Der volle Inhalt der QuelleChambre, P. L., T. H. Pigford, W. W. L. Lee, J. Ahn, S. Kajiwara, C. L. Kim, H. Kimura, H. Lung, W. J. Williams und S. J. Zavoshy. Mass transfer and transport in a geologic environment. Office of Scientific and Technical Information (OSTI), April 1985. http://dx.doi.org/10.2172/5161610.
Der volle Inhalt der QuelleBell, J., und L. Hand. Calculation of Mass Transfer Coefficients in a Crystal Growth Chamber through Heat Transfer Measurements. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/918405.
Der volle Inhalt der Quelle