Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Mass spectrometry.

Zeitschriftenartikel zum Thema „Mass spectrometry“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Mass spectrometry" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

KASAMA, Takeshi. „Biological Mass Spectrometry. Quadrupole Mass Spectrometer.“ Journal of the Mass Spectrometry Society of Japan 44, Nr. 3 (1996): 393–405. http://dx.doi.org/10.5702/massspec.44.393.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Glish, Gary L., und David J. Burinsky. „Hybrid mass spectrometers for tandem mass spectrometry“. Journal of the American Society for Mass Spectrometry 19, Nr. 2 (Februar 2008): 161–72. http://dx.doi.org/10.1016/j.jasms.2007.11.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Busch, Kenneth L., Gary L. Glish, Scott A. McLuckey und John J. Monaghan. „Mass spectrometry/mass spectrometry: techniques and applications of tandem mass spectrometry“. Analytica Chimica Acta 237 (1990): 509. http://dx.doi.org/10.1016/s0003-2670(00)83956-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Futrell, Jean H. „Mass spectrometry/mass spectrometry: Techniques and applications of tandem mass spectrometry“. Microchemical Journal 41, Nr. 2 (April 1990): 246–47. http://dx.doi.org/10.1016/0026-265x(90)90124-n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Moriarty, F. „Mass spectrometry/mass spectrometry. Techniques and applications of tandem mass spectrometry“. Environmental Pollution 61, Nr. 3 (1989): 261. http://dx.doi.org/10.1016/0269-7491(89)90246-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Cooks, R. G. „Mass Spectrometry/Mass Spectrometry. Techniques and Applications of Tandem Mass Spectrometry“. International Journal of Mass Spectrometry and Ion Processes 93, Nr. 2 (Oktober 1989): 265–66. http://dx.doi.org/10.1016/0168-1176(89)80103-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Pinkston, J. David, Martin Rabb, J. Throck Watson und John Allison. „New time‐of‐flight mass spectrometer for improved mass resolution, versatility, and mass spectrometry/mass spectrometry studies“. Review of Scientific Instruments 57, Nr. 4 (April 1986): 583–92. http://dx.doi.org/10.1063/1.1138874.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Glish, Gary L., und Scott A. McLuckey. „Hybrid Instruments for Mass Spectrometry/Mass Spectrometry“. Instrumentation Science & Technology 15, Nr. 1 (Januar 1986): 1–36. http://dx.doi.org/10.1080/10739148608543593.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Charles, M. Judith, und Yves Tondeur. „Choosing between high-resolution mass spectrometry and mass spectrometry/mass spectrometry environmental applications“. Environmental Science & Technology 24, Nr. 12 (Dezember 1990): 1856–60. http://dx.doi.org/10.1021/es00082a011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

KONDO, Fumio, und Ken-ichi HARADA. „Biological Mass Spectrometry. Mass Spectrometric Analysis of Cyanobacterial Toxins.“ Journal of the Mass Spectrometry Society of Japan 44, Nr. 3 (1996): 355–76. http://dx.doi.org/10.5702/massspec.44.355.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Wu, Junhan, Wenpeng Zhang und Zheng Ouyang. „On-Demand Mass Spectrometry Analysis by Miniature Mass Spectrometer“. Analytical Chemistry 93, Nr. 15 (05.04.2021): 6003–7. http://dx.doi.org/10.1021/acs.analchem.1c00575.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

NOHMI, Takashi, und Tetsuya MIYAGISHI. „Future Mass from Miniaturized Mass Spectrometry to Micro Mass Spectrometry.“ Journal of the Mass Spectrometry Society of Japan 51, Nr. 1 (2003): 54–66. http://dx.doi.org/10.5702/massspec.51.54.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Guerrera, Ida Chiara, und Oliver Kleiner. „Application of Mass Spectrometry in Proteomics“. Bioscience Reports 25, Nr. 1-2 (04.02.2005): 71–93. http://dx.doi.org/10.1007/s10540-005-2849-x.

Der volle Inhalt der Quelle
Annotation:
Mass spectrometry has arguably become the core technology in proteomics. The application of mass spectrometry based techniques for the qualitative and quantitative analysis of global proteome samples derived from complex mixtures has had a big impact in the understanding of cellular function. Here, we give a brief introduction to principles of mass spectrometry and instrumentation currently used in proteomics experiments. In addition, recent developments in the application of mass spectrometry in proteomics are summarised. Strategies allowing high-throughput identification of proteins from highly complex mixtures include accurate mass measurement of peptides derived from total proteome digests and multidimensional peptide separations coupled with mass spectrometry. Mass spectrometric analysis of intact proteins permits the characterisation of protein isoforms. Recent developments in stable isotope labelling techniques and chemical tagging allow the mass spectrometry based differential display and quantitation of proteins, and newly established affinity procedures enable the targeted characterisation of post-translationally modified proteins. Finally, advances in mass spectrometric imaging allow the gathering of specific information on the local molecular composition, relative abundance and spatial distribution of peptides and proteins in thin tissue sections.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Termopoli, Veronica, Maurizio Piergiovanni, Davide Ballabio, Viviana Consonni, Emmanuel Cruz Muñoz und Fabio Gosetti. „Condensed Phase Membrane Introduction Mass Spectrometry: A Direct Alternative to Fully Exploit the Mass Spectrometry Potential in Environmental Sample Analysis“. Separations 10, Nr. 2 (17.02.2023): 139. http://dx.doi.org/10.3390/separations10020139.

Der volle Inhalt der Quelle
Annotation:
Membrane introduction mass spectrometry (MIMS) is a direct mass spectrometry technique used to monitor online chemical systems or quickly quantify trace levels of different groups of compounds in complex matrices without extensive sample preparation steps and chromatographic separation. MIMS utilizes a thin, semi-permeable, and selective membrane that directly connects the sample and the mass spectrometer. The analytes in the sample are pre-concentrated by the membrane depending on their physicochemical properties and directly transferred, using different acceptor phases (gas, liquid or vacuum) to the mass spectrometer. Condensed phase (CP) MIMS use a liquid as a medium, extending the range to new applications to less-volatile compounds that are challenging or unsuitable to gas-phase MIMS. It directly allows the rapid quantification of selected compounds in complex matrices, the online monitoring of chemical reactions (in real-time), as well as in situ measurements. CP-MIMS has expanded beyond the measurement of several organic compounds because of the use of different types of liquid acceptor phases, geometries, dimensions, and mass spectrometers. This review surveys advancements of CP-MIMS and its applications to several molecules and matrices over the past 15 years.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

ITO, Yuji, und Masahiro MATSUI. „Mass Spectrometry“. Journal of the Japan Society of Colour Material 63, Nr. 7 (1990): 419–29. http://dx.doi.org/10.4011/shikizai1937.63.419.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Lederman, Lynne. „Mass Spectrometry“. BioTechniques 46, Nr. 6 (Mai 2009): 399–401. http://dx.doi.org/10.2144/000113165.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Yates, John R. „Mass spectrometry“. Trends in Genetics 16, Nr. 1 (Januar 2000): 5–8. http://dx.doi.org/10.1016/s0168-9525(99)01879-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Burlingame, A. L., D. S. Millington, D. L. Norwood und D. H. Russell. „Mass spectrometry“. Analytical Chemistry 62, Nr. 12 (15.06.1990): 268–303. http://dx.doi.org/10.1021/ac00211a020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Burlingame, A. L., D. Maltby, D. H. Russell und P. T. Holland. „Mass spectrometry“. Analytical Chemistry 60, Nr. 12 (15.06.1988): 294–342. http://dx.doi.org/10.1021/ac00163a021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Burlingame, A. L., Robert K. Boyd und Simon J. Gaskell. „Mass Spectrometry“. Analytical Chemistry 68, Nr. 12 (Januar 1996): 599–652. http://dx.doi.org/10.1021/a1960021u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Burlingame, A. L., Robert K. Boyd und Simon J. Gaskell. „Mass Spectrometry“. Analytical Chemistry 70, Nr. 16 (August 1998): 647–716. http://dx.doi.org/10.1021/a1980023+.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Burlingame, A. L., T. A. Baillie und D. H. Russell. „Mass spectrometry“. Analytical Chemistry 64, Nr. 12 (15.06.1992): 467–502. http://dx.doi.org/10.1021/ac00036a025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Kinter, Michael. „Mass spectrometry“. Analytical Chemistry 67, Nr. 12 (15.06.1995): 493–97. http://dx.doi.org/10.1021/ac00108a034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Caprioli, Richard, und Alan Wu. „Mass Spectrometry“. Analytical Chemistry 65, Nr. 12 (15.06.1993): 470–74. http://dx.doi.org/10.1021/ac00060a619.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Burlingame, A. L., Robert K. Boyd und Simon J. Gaskell. „Mass Spectrometry“. Analytical Chemistry 66, Nr. 12 (Juni 1994): 634–83. http://dx.doi.org/10.1021/ac00084a024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Burlingame, A. L., Thomas A. Baillie und Peter J. Derrick. „Mass spectrometry“. Analytical Chemistry 58, Nr. 5 (April 1986): 165–211. http://dx.doi.org/10.1021/ac00296a015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Grotemeyer, Jürgen, Klaus G. Heumann und Wolf D. Lehmann. „Mass spectrometry“. Analytical and Bioanalytical Chemistry 386, Nr. 1 (08.08.2006): 21–23. http://dx.doi.org/10.1007/s00216-006-0653-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Van Thuijl, J. „Mass spectrometry“. TrAC Trends in Analytical Chemistry 5, Nr. 3 (März 1986): IX—X. http://dx.doi.org/10.1016/0165-9936(86)85017-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Grotemeyer, J. „Mass spectrometry“. Analytical and Bioanalytical Chemistry 377, Nr. 7-8 (01.12.2003): 1097. http://dx.doi.org/10.1007/s00216-003-2292-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Vickerman, J. C. „Mass spectrometry“. Endeavour 11, Nr. 2 (Januar 1987): 108. http://dx.doi.org/10.1016/0160-9327(87)90265-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Jannetto, Paul J., und Darlington Danso. „Mass spectrometry“. Clinical Biochemistry 82 (August 2020): 1. http://dx.doi.org/10.1016/j.clinbiochem.2020.06.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

P, D. „Mass Spectrometry“. Journal of Molecular Structure 160, Nr. 1-2 (August 1987): 183. http://dx.doi.org/10.1016/0022-2860(87)87016-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Robinson, Carol, und Robert J. Cotter. „Mass spectrometry“. Proteins: Structure, Function, and Genetics 33, S2 (1998): 1–2. http://dx.doi.org/10.1002/(sici)1097-0134(1998)33:2+<1::aid-prot1>3.0.co;2-m.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Lhotka, Radek, und Petr Vodička. „Aerosol Mass Spectrometry“. Chemické listy 118, Nr. 5 (15.05.2024): 254–62. http://dx.doi.org/10.54779/chl20240254.

Der volle Inhalt der Quelle
Annotation:
Mass spectrometry is widely used in various scientific fields. In atmospheric chemistry, there has been a long call for a detailed on-line analysis of the chemical composition of aerosol particles (i.e., particles in the solid or liquid state) in the atmosphere resulting in the development of the so-called aerosol mass spectrometers in the past 20 years. These instruments allow the measurement of the chemical composition of particles with sizes of ca. 50–800 nm, typically at minute resolution. Their development and possible applications are discussed in this review.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

NAGAO, Keisuke. „Fundamentals of Mass Spectrometry -Isotope Ratio Mass Spectrometry-“. Journal of the Mass Spectrometry Society of Japan 59, Nr. 2 (2011): 35–49. http://dx.doi.org/10.5702/massspec.59.35.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Musselman, Brian D. „K. Busch, G. Glish and S. Mcluckey. Mass spectrometry/mass spectrometry: Techniques and applications of tandem mass spectrometry, VCH publishing, New York, 1988. Mass Spectrometry/Mass Spectrometry“. Biological Mass Spectrometry 18, Nr. 10 (Oktober 1989): 942. http://dx.doi.org/10.1002/bms.1200181017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

LaiHing, K., P. Y. Cheng, T. G. Taylor, K. F. Willey, M. Peschke und M. A. Duncan. „Photodissociation in a reflectron time-of-flight mass spectrometer: a novel mass spectrometry/mass spectrometry configuration for high-mass systems“. Analytical Chemistry 61, Nr. 13 (Juli 1989): 1458–60. http://dx.doi.org/10.1021/ac00188a031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Dogra, Akshay. „A Thorough Examination of the Recent Advances in Mass Spectrometry“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 7 (31.07.2023): 1731–41. http://dx.doi.org/10.22214/ijraset.2023.54964.

Der volle Inhalt der Quelle
Annotation:
Abstract: Mass spectrometry has become an essential tool in pharmaceutical analysis, revolutionizing drug development, quality assurance, and our understanding of complex biological systems. This review provides a comprehensive overview of recent advances in mass spectrometry for pharmaceutical analysis. We discuss the fundamentals of mass spectrometry, including ionization and mass analysis principles, as well as the various types of mass spectrometers used in pharmaceutical analysis. We explore high-resolution mass spectrometry (HRMS), tandem mass spectrometry (MS/MS), ambient ionization mass spectrometry, and mass spectrometry imaging (MSI), highlighting their applications in drug characterization, quantification, imaging, and biomarker discovery. Furthermore, we examine the challenges faced by mass spectrometry, such as matrix effects and data interpretation, and discuss emerging trends and future perspectives. By understanding the recent advancements and addressing the challenges, mass spectrometry can continue to drive advancements in pharmaceutical analysis and quality assurance
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Meier, Heiko, und Gottfried Blaschke. „Capillary electrophoresis–mass spectrometry, liquid chromatography–mass spectrometry and nanoelectrospray-mass spectrometry of praziquantel metabolites“. Journal of Chromatography B: Biomedical Sciences and Applications 748, Nr. 1 (Oktober 2000): 221–31. http://dx.doi.org/10.1016/s0378-4347(00)00397-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Cooks, R. G., K. A. Cox und J. D. Williams. „High-performance mass spectrometry with the ion trap mass spectrometer“. Journal of Protein Chemistry 11, Nr. 4 (August 1992): 376–77. http://dx.doi.org/10.1007/bf01673733.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Budzikiewicz, H. „Selected reviews on mass spectrometric topics. XXVIII. Tandem mass spectrometry“. Mass Spectrometry Reviews 8, Nr. 2 (März 1989): 119. http://dx.doi.org/10.1002/mas.1280080204.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Budzikiewicz, H. „Selected reviews on mass spectrometric topics. XLV. Pyrolysis-mass spectrometry“. Mass Spectrometry Reviews 11, Nr. 3 (Mai 1992): 247. http://dx.doi.org/10.1002/mas.1280110304.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Budzikiewicz, H. „Selected reviews on mass spectrometric topics. XLVII. Accelerator mass spectrometry“. Mass Spectrometry Reviews 11, Nr. 5 (September 1992): 445. http://dx.doi.org/10.1002/mas.1280110505.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Roberts, Norman B., Brian N. Green und Michael Morris. „Potential of electrospray mass spectrometry for quantifying glycohemoglobin“. Clinical Chemistry 43, Nr. 5 (01.05.1997): 771–78. http://dx.doi.org/10.1093/clinchem/43.5.771.

Der volle Inhalt der Quelle
Annotation:
Abstract An electrospray ionization–mass spectrometric procedure has been developed for determining glycohemoglobin. Whole-blood samples from 78 diabetic and 50 nondiabetic subjects (glycation range 3–15%, as determined by electrospray mass spectrometry) were diluted 500-fold in an acidic denaturing solvent and introduced directly into a mass spectrometer. The resulting mass spectra were then processed to estimate the percentage of glycohemoglobin present in the sample. Total analysis time, including plotting the spectra and computing the percentage of glycation, was ∼3 min. The imprecision (CV) of the method was &lt;5.1% for inter- and intrabatch analyses for total glycohemoglobin in the range 3.6–14%. Comparison of the mass spectrometric results with those from established affinity chromatographic procedures showed good overall agreement. The relative glycation of the α- and β-chains was determined directly and was shown to be constant (0.64:1) over the glycation range measured. Only single glucose attachment to both the α- and β-chains was observed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Tian, Qingguo, und Steven J. Schwartz. „Mass Spectrometry and Tandem Mass Spectrometry of Citrus Limonoids“. Analytical Chemistry 75, Nr. 20 (Oktober 2003): 5451–60. http://dx.doi.org/10.1021/ac030115w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Shoji, Yuki, Mari Yotsu-Yamashita, Teruo Miyazawa und Takeshi Yasumoto. „Electrospray Ionization Mass Spectrometry of Tetrodotoxin and Its Analogs: Liquid Chromatography/Mass Spectrometry, Tandem Mass Spectrometry, and Liquid Chromatography/Tandem Mass Spectrometry“. Analytical Biochemistry 290, Nr. 1 (März 2001): 10–17. http://dx.doi.org/10.1006/abio.2000.4953.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Cooks, R. Graham, Alan K. Jarmusch, Christina R. Ferreira und Valentina Pirro. „Skin molecule maps using mass spectrometry“. Proceedings of the National Academy of Sciences 112, Nr. 17 (20.04.2015): 5261–62. http://dx.doi.org/10.1073/pnas.1505313112.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Van Berkel, Gary J., Gary L. Glish, Scott A. McLuckey und Albert A. Tuinman. „High-pressure ammonia chemical ionization mass spectrometry and mass spectrometry/mass spectrometry for porphyrin structure determination“. Energy & Fuels 4, Nr. 6 (November 1990): 720–29. http://dx.doi.org/10.1021/ef00024a018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Konstantinov, M. A., D. D. Zhdanov und I. Yu Toropygin. „Quantitative mass spectrometry with <sup>18</sup>O labelling as an alternative approach for determining protease activity: an example of trypsin“. Biological Products. Prevention, Diagnosis, Treatment 24, Nr. 1 (06.02.2024): 46–60. http://dx.doi.org/10.30895/2221-996x-2024-24-1-46-60.

Der volle Inhalt der Quelle
Annotation:
SCIENTIFIC RELEVANCE. In the quality control of proteolytic enzyme components of medicinal products, the activity of proteases is determined by spectrophotometry, which involves mea­suring the amidase or esterase activity using a synthetic substrate and the proteolytic activity using the Anson method. These methods require special substrates and have low sensitivity; their specificity may be insufficient, which may lead to serious errors. Quantitative mass spectrometry is an alternative approach to protease activity assays, which involves adding an isotope-labelled peptide to hydrolysates of the test enzyme. This approach allows determining the activity of proteases, notably, by the hydrolysis of specific peptide bonds, while simulta­neously confirming the identity and specificity of the test sample. Quantitative mass spectrometry has high sensitivity and does not require special substrates.AIM. This study aimed to investigate the possibility of enzymatic activity assay and enzyme identification by quantitative mass spectrometry with 18O labelling through an example of trypsin with casein.MATERIALS AND METHODS. The study used trypsin, casein, and H218O (Izotop, Russia). Peptide separation was performed using an Agilent 1100 HPLC system; mass spectra were obtained using a Bruker Ultraflex II MALDI-TOF/TOF mass spectrometer. Quantitative mass spectrometry was performed using a standard peptide, which was obtained from casein by tryptic digestion and HPLC purification. For 18O labelling, the authors dried the peptide and incubated it in H218О water. The quantitative analysis of the product was carried out using MALDI-TOF mass spectrometry. The authors used quantitative mass spectrometry with 18O labelling to determine enzymatic activity and calculate the Michaelis constant (KM).RESULTS. Following the tryptic digestion of casein, the authors identified the fragments corre­sponding to casein chains. The authors produced the isotope-labelled standard peptide and calculated its concentration using mass spectrometry. The authors determined the rate of casein digestion by trypsin and calculated the KM for trypsin, which was 13.65±0.60 μM. The standard deviation for repeated measurements showed that the mass-spectrometric method had a lower error of measurement than the spectrophotometric method. The sensitivity threshold for the mass-spectrometric method was 0.50±0.08 μM.CONCLUSIONS. The results obtained with trypsin confirm the possibility of enzymatic activity determination by the proposed method of quantitative mass spectrometry with 18O labelling. According to the sensitivity evaluation results, this method can be used for the simultaneous determination of enzyme activity, identity, and specificity. The proposed mass spectrometry approach is universal, it does not require expensive materials and reagents, and it can be easily adapted to determine the activity of virtually any protease.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Sauvage, François-Ludovic, Franck Saint-marcoux, Bénédicte Duretz, Didier Deporte, Gérard Lachatre und Pierre Marquet. „Screening of Drugs and Toxic Compounds with Liquid Chromatography-Linear Ion Trap Tandem Mass Spectrometry“. Clinical Chemistry 52, Nr. 9 (01.09.2006): 1735–42. http://dx.doi.org/10.1373/clinchem.2006.067116.

Der volle Inhalt der Quelle
Annotation:
Abstract Background: In clinical and forensic toxicology, general unknown screening is used to detect and identify exogenous compounds. In this study, we aimed to develop a comprehensive general unknown screening method based on liquid chromatography coupled with a hybrid triple-quadrupole linear ion trap mass spectrometer. Methods: After solid-phase extraction, separation was performed using gradient reversed-phase chromatography. The mass spectrometer was operated in the information-dependent acquisition mode, switching between a survey scan acquired in the Enhanced Mass Spectrometry mode with dynamic subtraction of background noise and a dependent scan obtained in the enhanced product ion scan mode. The complete cycle time was 1.36 s. A library of 1000 enhanced product ion–tandem mass spectrometry spectra in positive mode and 250 in negative mode, generated using 3 alternated collision tensions during each scan, was created by injecting pure solutions of drugs and toxic compounds. Results: Comparison with HPLC-diode array detection and gas chromatography-mass spectrometry for the analysis of 36 clinical samples showed that linear ion trap tandem mass spectrometry could identify most of the compounds (94% of the total). Some compounds were detected only by 1 of the other 2 techniques. Specific clinical cases highlighted the advantages and limitations of the method. Conclusion: A unique combination of new operating modes provided by hybrid triple-quadrupole linear ion trap mass spectrometers and new software features allowed development of a comprehensive and efficient method for the general unknown screening of drugs and toxic compounds in blood or urine.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie