Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Marine applications“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Marine applications" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Marine applications"
Veldhuis, Marcel J. W., und Gijsbert W. Kraay. „Application of flow cytometry in marine phytoplankton research: current applications and future perspectives“. Scientia Marina 64, Nr. 2 (30.06.2000): 121–34. http://dx.doi.org/10.3989/scimar.2000.64n2121.
Der volle Inhalt der QuelleHarry, N. J. F. V. „Marine applications“. Materials Science and Technology 2, Nr. 3 (März 1986): 295–301. http://dx.doi.org/10.1179/mst.1986.2.3.295.
Der volle Inhalt der QuelleBitzer, Tom. „Honeycomb Marine Applications“. Journal of Reinforced Plastics and Composites 13, Nr. 4 (April 1994): 355–60. http://dx.doi.org/10.1177/073168449401300406.
Der volle Inhalt der QuelleTirelli, Giulio. „New Achievements and Market Perspectives in LNG Marine Applications“. Marine Engineering 47, Nr. 6 (2012): 811–16. http://dx.doi.org/10.5988/jime.47.811.
Der volle Inhalt der QuelleFaltinsen, Odd M., Maurizio Landrini und Marilena Greco. „Slamming in marine applications“. Journal of Engineering Mathematics 48, Nr. 3/4 (April 2004): 187–217. http://dx.doi.org/10.1023/b:engi.0000018188.68304.ae.
Der volle Inhalt der QuelleSantamaria, R., S. Troisi und L. Turturici. „Marine applications of GPS“. Marine Geodesy 14, Nr. 1 (Januar 1990): 13–20. http://dx.doi.org/10.1080/15210609009379642.
Der volle Inhalt der QuelleMorris, V. J. „Marine Polysaccharides – Food Applications“. Trends in Food Science & Technology 25, Nr. 1 (Mai 2012): 53. http://dx.doi.org/10.1016/j.tifs.2011.10.010.
Der volle Inhalt der QuelleJeanroy, A., A. Bouvet und G. Remillieux. „HRG and marine applications“. Gyroscopy and Navigation 5, Nr. 2 (April 2014): 67–74. http://dx.doi.org/10.1134/s2075108714020047.
Der volle Inhalt der QuelleOWEN, T. B., und J. B. ALFERS. „MARINE APPLICATIONS OF PLASTICS“. Journal of the American Society for Naval Engineers 72, Nr. 4 (18.03.2009): 609–22. http://dx.doi.org/10.1111/j.1559-3584.1960.tb04070.x.
Der volle Inhalt der QuelleLewis, Ron. „Marine Robotics and Applications“. Underwater Technology 37, Nr. 3 (18.11.2020): 119–21. http://dx.doi.org/10.3723/ut.37.119.
Der volle Inhalt der QuelleDissertationen zum Thema "Marine applications"
Troncoso, Abelleira Maria Teresa. „Batteries for marine applications“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for marin teknikk, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22408.
Der volle Inhalt der QuelleMargarit, Martín Gerard. „Marine applications of SAR polarimetry“. Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/6944.
Der volle Inhalt der QuelleFins l'actualitat, diferents propostes s'han estudiat per monitorar vaixells, com per exemple transpondedors, teledetecció òptica i sensors acústics passius. L'experiència en entorns reals ha demostrat que cap d'aquestes solucions és eficient. Una alternativa poden ser els Radars d'Obertura Sintètica (SAR). Aquests sistemes utilitzen les propietats de reflectivitat i dispersió dels vaixells per identificar-los amb independència de qualsevol fenomen atmosfèric i del cicle dia/nit. El sensors SAR sintetitzen una obertura més gran que la real permetent l'obtenció d'imatges de reflectivitat d'uns quants kilòmetres d'amplada amb una resolució de pocs metres.
En la monitorització de vaixells, la tecnologia SAR ha demostrat unes bones prestacions per la detecció. Treu profit del fet que els vaixells dispersen més energia que el mar i, així, apareixen en les imatges com punts molt brillants. Però, la seva utilitat en la identificació de vaixells encara no està clara. Hi ha dues limitacions importants: 1) les resolucions dels sistemes actuals no semblen suficients per aïllar característiques geomètriques a partir de la informació de reflectivitat i 2) les distorsions que les signatures dels vaixells experimenten en entorns marins. Aquests problemes es poden resoldre parcialment si s'utilitzen dades SAR multidimensional. Aquest concepte es refereix al fet d'adquirir imatges SAR modificant un o més paràmetres del sistema. En la classificació de vaixells, hi ha dues opcions clares: 1) Polarimetria SAR (PolSAR) que utilitza les dues components polarimètriques de l'ona EM i 2) la Interferometria SAR que s'obté per la combinació de dues imatges SAR adquirides des de posicions molt properes. Per a una banda, la polarització de l'ona EM és una propietat intrínseca de l'ona que ajuda a aïllar estructures geomètriques particulars per mitjà de la teoria de descomposició de blancs (TD). Per l'altra, la interferometria treu profit de la diferencia de fase entre les dues imatges SAR per obtenir la tercera dimensió de l'escena.
PolSAR and InSAR presenten grans possibilitats per la monitorització de vaixells ja que poden solucionar algunes de les limitacions dels mètodes clàssics. Desafortunadament, encara no han estat profundament estudiades a causa de les dificultats en obtenir dades reals validades. Això ha limitat el nombre d'estudis en aquesta temàtica. En aquest entorn, la tesi està orientada a avaluar fins a quin punt les tècniques PolSAR i InSAR poden ser útils per la monitorització de vaixells. Per a tal propòsit, s'han fixat quatre objectius importants:
1. El desenvolupament d'un simulador SAR eficient que doni imatges realistes de vaixells i que solucioni el dèficit de dades reals en entorns marins.
2. L'estudi de la dispersió dels vaixells que fixi els principals mecanismes de dispersió observats en imatges SAR i com es relacionen amb la geometria dels vaixells.
3. Un estudi de les prestacions de les tècniques actuals d'anàlisis de dades PolSAR en la classificació de vaixells.
4. El desenvolupament d'un mètode nou i eficient per la identificació de vaixells.
Al llarg de la tesis, els diferents punts seran estudiats i resolts. El desenvolupament de GRECOSAR, un simulador SAR de blancs complexes que dóna imatges de vaixells similars a les adquirides en entorns reals, ha estat essencial per estudiar les propietats de dispersió dels vaixells. Ha permès demostrar que els vaixells es poden distingir a partir del seu patró dispersiu, el qual és senzill i dominat per alguns dispersors guia que presenten una marcada estabilitat i potència de dispersió. Amb aquests resultats ha estat possible desenvolupar un nou mètode que pot identificar vaixells sota condicions d'observació adverses. Combina característiques polarimètriques i interferomètriques SAR (PolInSAR) per inferir estimacions 3D de la geometria dels vaixells. Diferents tests han demostrat que aquest mètode dóna una millor fiabilitat en la identificació que altres mètodes actualment disponibles. Malgrat tot, fixa uns requeriments tecnològics més elevats, sobretot en la resolució de les imatges i en les característiques PolInSAR. La nova generació de sensors SAR els poden cobrir.
Oceans support a complex and fragile chain that links a high number of biological, sociological and economical factors. In these days, this ecosystem is endangered by human activity and one of the main hot spots is overfishing. As a result, authorities worldwide have become aware about the necessity to law-protect the marine environment in order to assure the safety and sustenance of human beings. This demands the development of fisheries policy to monitor the activities of ships.
Up to now, different vessel monitoring proposals have been considered, for instance transponders, optical remote sensing or passive acoustic sensors. The lessons learnt in real scenarios have shown that none of these solutions is efficient. A feasible option may be the so-called active Synthetic Aperture Radar (SAR) technology. It uses the reflectivity/scattering properties of vessels for basing the identification process with independence of any atmospheric phenomena and day/night cycle. SAR sensors synthesize an antenna aperture larger than the real one and this allows to acquire reflectivity images of some tens of kilometers wide with a resolution of few meters.
In vessel monitoring, SAR imagery has proven good performance for vessel detection. They take profit of the fact that vessels normally backscatter more power than the sea and, hence, they appear in the images as bright spots. But their usefulness in vessel identification has not been established yet. There are two main limitations, namely: 1) the resolution of current systems that appears to be not enough for isolating geometrical features from the reflectivity information of SAR images and 2) the distortions that vessel' signatures experiment within sea scenarios. Such problems can be solved up to certain extend if multidimensional SAR data is used. This concept refers to the possibility to acquire different SAR images by modifying one or more imaging parameters. In the scope of vessel classification, there are two main options, namely: 1) SAR polarimetry (PolSAR) that refers to the usage of the two polarimetric components of the EM wave and 2) SAR interferometry (InSAR) derived by combining two SAR images acquired from slightly different positions. On the one hand, the polarization of an EM wave is an intrinsic wave property that helps on identifying specific geometrical structures via Target Decomposition (TD) theory. On the other hand, Interferometry takes profit of the phase difference between the two SAR images to retrieve the third dimension of the scene.
PolSAR and InSAR have great potentialities for supporting vessel monitoring as they can overcome some of the limitations of classical methods. Unfortunately, they have not been exploited yet due to the difficulties on having at one's disposal real data with reliable ground-truth. This has limited the number of works tackling such issue. In this framework, the current thesis is focused to evaluate up to which extend PolSAR and InSAR imagery are reliable for vessel monitoring. For such purpose, four main goals are proposed, namely:
1. The development of an efficient SAR simulation environment that provides realistic vessel SAR images and overcomes the current data deficiency related to marine scenarios.
2. The study of vessel scattering to fix the main polarimetric scattering mechanisms observed in vessel SAR images and how they are related with the geometries of vessels.
3. A performance study of current analysis tools of PolSAR data in vessel classification.
4. The development of a novel and efficient methodology for vessel identification.
Along the thesis, the different points are studied and solved. The development of GRECOSAR, a SAR simulator of complex targets able to provide vessel images similar to those obtained in real scenarios, has been essential for studying the scattering properties of vessels. It has allowed to show that vessels can be distinguished by means of their scattering pattern, which appear to be not so complex and dominated by some guide scatters that present a marked reflectivity stability and scattered power. With these results, a new approach able to identify vessels even under adverse observation conditions has been developed. It combines polarimetric and interferometric SAR (PolInSAR) capabilities to retrieve 3D estimates of the geometry of ships. Different tests have shown that the proposed method provides better identification confidence than other available methods. However, it demands higher technological requirements in terms of image resolution and PolInSAR features. The new generation of SAR sensors may fulfill them.
Knox, Esther M. „Marine applications for structural adhesives“. Thesis, University of Glasgow, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241876.
Der volle Inhalt der QuelleJayakumar, Gladstone Christopher. „Leathers for marine applications - 233“. Verein für Gerberei-Chemie und -Technik e. V, 2019. https://slub.qucosa.de/id/qucosa%3A34261.
Der volle Inhalt der QuelleMaistralis, Eleftherios. „Formal safety assessment of marine applications“. Thesis, Liverpool John Moores University, 2007. http://researchonline.ljmu.ac.uk/5843/.
Der volle Inhalt der QuelleFagerberg, Linus. „Wrinkling of sandwich panels for marine applications“. Doctoral thesis, KTH, Aeronautical and Vehicle Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3587.
Der volle Inhalt der QuelleThe recent development in the marine industry with largerships built in sandwich construction and also the use of moreadvanced materials has enforced improvements of design criteriaregarding wrinkling. The commonly used Hoffs formula isnot suited for the highly anisotropic fibre reinforced sandwichface sheets of today.
The work presented herein investigates the wrinklingphenomenon. A solution to wrinkling of anisotropic sandwichplates subjected to multi-axial loading is presented. Thesolution includes the possibility of skew wrinkling where thewrinkling waves are not perpendicular to the principal loaddirection. The wrinkling angle is obtained from the solutiontogether with the maximum wrinkling load. This method has beensupported with tests of anisotropic plates subjected touni-axial and bi-axial loading.
The effect of the face sheet local bending stiffness showsthe importance of including the face sheet stacking sequence inthe wrinkling analysis. The work points out the influence ofthe face sheet local bending stiffness on wrinkling. Threedifferent means of improving the wrinkling load except changingcore material is evaluated. The effect of the differentapproaches is evaluated theoretically and also throughcomparative testing. The transition between wrinkling and pureface sheet compression failure is investigated. Theoreticaldiscussions are compared with compressive test results of twodifferent face sheet types on seven different core densities.The failure modes are investigated using fractography. Theresults clearly show how the actual sandwich compressionfailure mode is influenced by the choice of core material,changing from wrinkling failure to face sheet micro bucklingfailure as the modulus density increases.
Finally, a new approach is presented where the wrinklingproblem is transferred from a pure stability problem to amaterial strength criterion. The developed theory providesmeans on how to decide which sandwich constituent will failfirst and at which load it will fail. The method give insightto and develop the overall understanding of the wrinklingphenomenon. A very good correlation is found when the developedtheory is compared with both finite element calculations and toexperimental tests.
Keywords:wrinkling, local buckling, imperfection,stability, anisotropy, sandwich
Meskill, Shay J. „Applications of marine radar wave observation systems“. Thesis, Oregon Oregon State University, 2009. http://hdl.handle.net/10945/4299.
Der volle Inhalt der QuelleApproved for public release, distribution unlimited
This project utilized both shore-based and shipboard commercial marine radar technology to collect wave statistics. In the first application a shore-based system was installed at Yaquina Bay in Newport, Oregon in order to collect real-time wave information. This information was collected under the auspices of the Northwest Association of Networked Ocean Observing Systems (NANOOS) and will be used in ongoing studies on wave-current interaction. In the second application, a shipboard radar system was utilized to develop processing procedures and algorithms for collecting offshore wave data. These shipboard collections were in support of the environmental baseline study of the Reedsport Wave Energy Site, funded by the Oregon Wave Energy Trust (OWET).
Byrne, John Charles. „Polynomial systems control design with marine applications“. Thesis, University of Strathclyde, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280403.
Der volle Inhalt der QuelleWilkie, J. „Static and dynamic optimisation with marine applications“. Thesis, University of Strathclyde, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382414.
Der volle Inhalt der QuelleDiyaroglu, Cagan. „Peridynamics and its applications in marine structures“. Thesis, University of Strathclyde, 2016. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=26573.
Der volle Inhalt der QuelleBücher zum Thema "Marine applications"
Britton, C. F. Polymers in marine applications. Oxford: Pergamon Press, 1990.
Den vollen Inhalt der Quelle findenJaulin, Luc, Andrea Caiti, Marc Carreras, Vincent Creuze, Frédéric Plumet, Benoît Zerr und Annick Billon-Coat, Hrsg. Marine Robotics and Applications. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70724-2.
Der volle Inhalt der QuelleMarine polysaccharides: Food applications. Boca Raton, FL: CRC Press, 2011.
Den vollen Inhalt der Quelle findenDullea, Mark. Marine biopolymers. Norwalk, CT: Business Communications Co., 1994.
Den vollen Inhalt der Quelle findenTsinker, Gregory P. Marine Structures Engineering: Specialized Applications. Boston, MA: Springer US, 1995.
Den vollen Inhalt der Quelle findenMarine microbiology: Ecology and applications. London: Garland Science/BIOS Scientific Publishers, 2004.
Den vollen Inhalt der Quelle findenMarine structures engineering: Specialized applications. New York: Chapman & Hall, 1995.
Den vollen Inhalt der Quelle findenSpeight, Martin. Marine ecology: Concepts and applications. Hoboken, N.J: Wiley-Blackwell, 2010.
Den vollen Inhalt der Quelle findenTsinker, Gregory P. Marine Structures Engineering: Specialized Applications. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2081-8.
Der volle Inhalt der QuelleKato, Naomi, Hrsg. Applications to Marine Disaster Prevention. Tokyo: Springer Japan, 2017. http://dx.doi.org/10.1007/978-4-431-55991-7.
Der volle Inhalt der QuelleBuchteile zum Thema "Marine applications"
Tucker, Wayne C., und Thomas Juska. „Marine Applications“. In Handbook of Composites, 916–30. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-6389-1_43.
Der volle Inhalt der QuelleChatterjee, Bishnu Pada, und Partha Pratim Bose. „Marine carbohydrates and their applications“. In Marine Glycobiology, 469–76. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315371399-36.
Der volle Inhalt der QuelleKoide, Yasuhiro, Yuki Fujii, Imtiaj Hasan, Yukiko Ogawa, Sultana Rajia, Sarkar M. A. Kawsar, Robert A. Kanaly et al. „SUEL/RBL and Their Biomedical Applications“. In Marine OMICS, 407–18. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372303-22.
Der volle Inhalt der QuelleJoshi, Ramakant, Navneet Garud und Wasim Akram. „Marine Nutraceuticals“. In Marine Niche: Applications in Pharmaceutical Sciences, 53–69. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5017-1_3.
Der volle Inhalt der QuelleDavies, P. „Composites for Marine Applications“. In Mechanics of Composite Materials and Structures, 235–48. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4489-6_12.
Der volle Inhalt der QuelleDavies, P., und P. Chauchot. „Composites for Marine Applications“. In Mechanics of Composite Materials and Structures, 249–60. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4489-6_13.
Der volle Inhalt der QuelleKumar, Ajoy, und Nathan Murry. „LiDAR for Marine Applications“. In Geospatial Data Science Techniques and Applications, 131–54. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315228396-7.
Der volle Inhalt der QuelleRao, P. Krishna, Susan J. Holmes, Ralph K. Anderson, Jay S. Winston und Paul E. Lehr. „Aviation and Marine Applications“. In Weather Satellites: Systems, Data, and Environmental Applications, 318–30. Boston, MA: American Meteorological Society, 1990. http://dx.doi.org/10.1007/978-1-944970-16-1_30.
Der volle Inhalt der QuelleRicha und Rajeshwar P. Sinha. „Biomedical Applications of Mycosporine-Like Amino Acids“. In Marine Microbiology, 509–34. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527665259.ch27.
Der volle Inhalt der QuelleJana, Sougata, und Subrata Jana. „Marine Nanobiomaterials: Their Biomedical and Drug Delivery Applications“. In Marine OMICS, 479–96. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372303-26.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Marine applications"
WHITE, W., R. LEBEAU und R. CHURCH. „SES applications“. In Advanced Marine Systems Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-2376.
Der volle Inhalt der QuellePerson, R. „Marine applications of GALILEO“. In Oceans 2005 - Europe. IEEE, 2005. http://dx.doi.org/10.1109/oceanse.2005.1513267.
Der volle Inhalt der QuelleBerlinger, Carl H., und Emmett L. Murphy. „Reliability Improvement of Medium Speed Diesels in Nuclear Standby Applications“. In Marine Propulsion Technology. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1986. http://dx.doi.org/10.4271/860887.
Der volle Inhalt der QuelleREMINGTON, W. „The Canadair CL-215 amphibious aircraft - Development and applications“. In Advanced Marine Vehicles Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1541.
Der volle Inhalt der QuelleIjaz, M., P. N. H. Wright, M. Robinson und A. G. Gibson. „Vacuum Consolidation of Commingled Thermoplastic Matrix Composites for Marine Applications“. In Advanced Marine Materials & Coatings. RINA, 2006. http://dx.doi.org/10.3940/rina.amm.2006.11.
Der volle Inhalt der QuelleGach, L. S. „Marine applications of cellular phones“. In 36th IEEE Vehicular Technology Conference. IEEE, 1986. http://dx.doi.org/10.1109/vtc.1986.1623477.
Der volle Inhalt der QuelleNoy, P. „Active filters in marine applications“. In Second IEE International Conference on Power Electronics, Machines and Drives. IEE, 2004. http://dx.doi.org/10.1049/cp:20040314.
Der volle Inhalt der QuelleYamaoka, Kanji, Masahiro Wada, Yoshiharu Kagami, Junichi Yoshida und Naoya Ogata. „Optical applications of marine DNA“. In Microelectronics, MEMS, and Nanotechnology, herausgegeben von Jung-Chih Chiao, Andrew S. Dzurak, Chennupati Jagadish und David V. Thiel. SPIE, 2005. http://dx.doi.org/10.1117/12.639018.
Der volle Inhalt der QuelleYamaoka, Kanji, Yoshiharu Kagami, Masahiro Wada, Amane Watanuki, Junichi Yoshida, Hiroharu Ikeda und Naoya Ogata. „Optoelectronic applications of marine DNA“. In Asia-Pacific Optical Communications, herausgegeben von Chung-En Zah, Yi Luo und Shinji Tsuji. SPIE, 2005. http://dx.doi.org/10.1117/12.577187.
Der volle Inhalt der QuelleTetrault, P. J. „The Future of Marine Engine Remote Monitoring in Marine Applications“. In Managing Reliability & Maintainability in the Maritime Industry. RINA, 2012. http://dx.doi.org/10.3940/rina.rm.2012.12.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Marine applications"
Vanicek, P., D. Wells, E. Derenyi, A. Kleusberg, R. Yazdani, T. Arsenault, N. Christou, J. Mantha und S. Pagiatakis. Satellite altimetry applications for marine gravity. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/130221.
Der volle Inhalt der QuelleChristou, N., A. Kleusberg, J. Mantha und S. Pagiatakis. Satellite Altimetry Applications For Marine Gravity: Software. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/130249.
Der volle Inhalt der QuellePlumley, F. G. Marine Diatom Plasmids and their Biotechnological Applications. Fort Belvoir, VA: Defense Technical Information Center, Februar 1992. http://dx.doi.org/10.21236/ada264407.
Der volle Inhalt der QuelleSugihara, George. Applications of Nonlinear Time Series Methods in Marine Ecology. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada362252.
Der volle Inhalt der QuelleBloomfield, D. P. Diesel fuel to dc power: Navy & Marine Corps Applications. Office of Scientific and Technical Information (OSTI), Dezember 1996. http://dx.doi.org/10.2172/460233.
Der volle Inhalt der QuelleOber, Christopher K. Non-Leaching, Benign Antifouling Multilayer Polymer Coatings for Marine Applications. Fort Belvoir, VA: Defense Technical Information Center, März 2010. http://dx.doi.org/10.21236/ada547015.
Der volle Inhalt der QuelleVachon, P. W., P. Adlakha, H. Edel, M. D. Henschel, B. Ramsay, D. G. Flett, G. Staples und S. J. Thomas. Canadian Progress Toward Marine and Coastal Applications of Synthetic Aperture Radar. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2000. http://dx.doi.org/10.4095/219553.
Der volle Inhalt der QuelleEnglot, Brendan J. Stability and Robustness Analysis Tools for Marine Robot Localization and Mapping Applications. Fort Belvoir, VA: Defense Technical Information Center, Juni 2009. http://dx.doi.org/10.21236/ada507889.
Der volle Inhalt der QuelleIerodiaconou, D., S. Murfitt, B. Allan, A. Bellgrove, A. Rattray, D. Kennedy, S. Howe, A. Schimel und M. Young. Applications of unmanned aerial vehicles for mapping coastal processes and intertidal marine habitats. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/305860.
Der volle Inhalt der QuelleBurgess, William C. A Miniature Acoustic Recording Tag: Applications to Assess Marine Widelife Response to Sound. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada480647.
Der volle Inhalt der Quelle