Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Mapping class subgroups“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Mapping class subgroups" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Mapping class subgroups"
Matsuzaki, Katsuhiko. „Polycyclic quasiconformal mapping class subgroups“. Pacific Journal of Mathematics 251, Nr. 2 (03.06.2011): 361–74. http://dx.doi.org/10.2140/pjm.2011.251.361.
Der volle Inhalt der QuelleClay, Matt, Johanna Mangahas und Dan Margalit. „Right-angled Artin groups as normal subgroups of mapping class groups“. Compositio Mathematica 157, Nr. 8 (27.07.2021): 1807–52. http://dx.doi.org/10.1112/s0010437x21007417.
Der volle Inhalt der QuelleCalegari, Danny, und Lvzhou Chen. „Normal subgroups of big mapping class groups“. Transactions of the American Mathematical Society, Series B 9, Nr. 30 (19.10.2022): 957–76. http://dx.doi.org/10.1090/btran/108.
Der volle Inhalt der QuelleKim, Heejoung. „Stable subgroups and Morse subgroups in mapping class groups“. International Journal of Algebra and Computation 29, Nr. 05 (08.07.2019): 893–903. http://dx.doi.org/10.1142/s0218196719500346.
Der volle Inhalt der QuelleLeininger, Christopher J., und D. B. McReynolds. „Separable subgroups of mapping class groups“. Topology and its Applications 154, Nr. 1 (Januar 2007): 1–10. http://dx.doi.org/10.1016/j.topol.2006.03.013.
Der volle Inhalt der QuelleBavard, Juliette, Spencer Dowdall und Kasra Rafi. „Isomorphisms Between Big Mapping Class Groups“. International Mathematics Research Notices 2020, Nr. 10 (25.05.2018): 3084–99. http://dx.doi.org/10.1093/imrn/rny093.
Der volle Inhalt der QuelleFarb, Benson, und Lee Mosher. „Convex cocompact subgroups of mapping class groups“. Geometry & Topology 6, Nr. 1 (14.03.2002): 91–152. http://dx.doi.org/10.2140/gt.2002.6.91.
Der volle Inhalt der QuelleBerrick, A. J., V. Gebhardt und L. Paris. „Finite index subgroups of mapping class groups“. Proceedings of the London Mathematical Society 108, Nr. 3 (05.08.2013): 575–99. http://dx.doi.org/10.1112/plms/pdt022.
Der volle Inhalt der QuelleAnderson, James W., Javier Aramayona und Kenneth J. Shackleton. „Free subgroups of surface mapping class groups“. Conformal Geometry and Dynamics of the American Mathematical Society 11, Nr. 04 (15.03.2007): 44–55. http://dx.doi.org/10.1090/s1088-4173-07-00156-7.
Der volle Inhalt der QuelleFranks, John, und Kamlesh Parwani. „Zero entropy subgroups of mapping class groups“. Geometriae Dedicata 186, Nr. 1 (18.10.2016): 27–38. http://dx.doi.org/10.1007/s10711-016-0178-9.
Der volle Inhalt der QuelleDissertationen zum Thema "Mapping class subgroups"
McLeay, Alan. „Subgroups of mapping class groups and braid groups“. Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/9075/.
Der volle Inhalt der QuelleGekhtman, Ilya. „Dynamics of convex cocompact subgroups of mapping class groups“. Thesis, The University of Chicago, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3628078.
Der volle Inhalt der QuelleGiven a convex cocompact subgroup G < Mod(S), and points x, y ∈ Teich(S) we obtain asymptotic formulas as R → ∞ 1 of |BR(|x ) [special character omitted] Gy| as well as the number of conjugacy classes of pseudo-Anosov elements in G of dilatation at most R. We do this by developing an analogue of Patterson-Sullivan theory for the action of G on PMF.
Hope, Graham John. „Realisation of Brown subgroups and p-periodicity of mapping class groups“. Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442733.
Der volle Inhalt der QuelleSaadi, Fayssal. „Dynamique sur les espaces de modules“. Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0039.
Der volle Inhalt der QuelleIn this thesis, we are interested in the dynamics of the mapping class subgroups on the U(2) character variety. More precisely, we deal with ergodicity questions of a subgroup G of the mapping class group Mod(g,n) of a compact surface S(g,n) of genus g and n boundary components. These questions were naturally raised after Goldman's proof of the ergodicity of mapping class groups on the SU(2)-character variety. The first general result in this direction is due to Funar and Marché by showing that the first Johnson subgroups act ergodically on the character variety, for any closed surfaces S(g). On the other hand, Brown showed the existence of an elliptic fixed point (or a double elliptic fixed point) for any subgroup generated by a pseudo-Anosov element on the punctured torus S(1,1). This led to the proof of the non-ergodicity of such subgroups by Forni, Goldman, Lawton, and Mateus by applying KAM theory. In the first part of the thesis, we study the natural dynamics of the moduli space of spherical triangles on the 2-sphere relating these dynamics to the dynamics of the mapping class group on the SU(2)-character variety of the punctured torus.The second part is devoted to the study of the existence of elliptic fixed points for pseudo-Anosov homeomorphisms on the character varieties of punctured surfaces S(g,n), where g is 0 or 1. By showing that near any relative character variety of the once punctured torus, for a set of positive measure and dense of levels k, there exists a family of pseudo-Anosov elements that do not act ergodically on that level, in the case of the punctured torus S(1,1). A similar result holds for a set of parameters B in the case of the four-punctured sphere S(0,4). Then these results can be combined to construct a family of pseudo-Anosov elements on the twice-punctured torus S(1,2) that admit an elliptic fixed point.We discuss then the action of a group G generated by Dehn-twist along a pair of filling multi-curves or along a family of filling curves on S(g). We show in this part that there exist two filling multi-curves on the surface of genus two S(2) whose associated Dehn twists generate a group G acting non-ergodically on representation variety by finding explicit invariant rational functions. Similarly, We found invariant rational functions of a subgroup G generated by Dehn-twists along a family of filling loops on the character variety of the non-orientable surface of genus 4
Cumplido, Cabello María. „Sous-groupes paraboliques et généricité dans les groupes d'Artin-Tits de type sphérique“. Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S022/document.
Der volle Inhalt der QuelleIn the first part of this thesis we study the genericity conjecture: In the Cayley graph of the mapping class group of a closed surface we look at a ball of large radius centered on the identity vertex, and at the proportion of pseudo-Anosov vertices among the vertices in this ball. The genericity conjecture states that this proportion should tend to one as the radius tends to infinity. We prove that it stays bounded away from zero and prove similar results for a large class of subgroups of the mapping class group. We also present analogous results for Artin--Tits groups of spherical type, knowing that in this case being pseudo-Anosov is analogous to being a loxodromically acting element. In the second part we provide results about parabolic subgroups of Artin-Tits groups of spherical type: The minimal standardizer of a curve on a punctured disk is the minimal positive braid that transforms it into a round curve. We give an algorithm to compute it in a geometrical way. Then, we generalize this problem algebraically to parabolic subgroups of Artin--Tits groups of spherical type. We also show that the intersection of two parabolic subgroups is a parabolic subgroup and that the set of parabolic subgroups forms a lattice with respect to inclusion. Finally, we define the simplicial complex of irreducible parabolic subgroups, and we propose it as the analogue of the curve complex for mapping class groups
McNeill, Reagin. „A new filtration of the Magnus kernel“. Thesis, 2013. http://hdl.handle.net/1911/72006.
Der volle Inhalt der QuelleBücher zum Thema "Mapping class subgroups"
Wootton, Aaron, S. Broughton und Jennifer Paulhus, Hrsg. Automorphisms of Riemann Surfaces, Subgroups of Mapping Class Groups and Related Topics. Providence, Rhode Island: American Mathematical Society, 2022. http://dx.doi.org/10.1090/conm/776.
Der volle Inhalt der QuelleBridson, Martin R. Cube Complexes, Subgroups of Mapping Class Groups and Nilpotent Genus. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198784913.003.0003.
Der volle Inhalt der QuellePaulhus, Jennifer, Aaron Wootton und S. Allen Broughton. Automorphisms of Riemann Surfaces, Subgroups of Mapping Class Groups and Related Topics. American Mathematical Society, 2022.
Den vollen Inhalt der Quelle findenFarb, Benson, und Dan Margalit. Torsion. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691147949.003.0008.
Der volle Inhalt der QuelleBuchteile zum Thema "Mapping class subgroups"
Gilman, Jane. „CHARACTERIZATION OF FINITE SUBGROUPS OF THE MAPPING-CLASS GROUP“. In Combinatorial Group Theory and Topology. (AM-111), herausgegeben von S. M. Gersten und John R. Stallings, 433–42. Princeton: Princeton University Press, 1987. http://dx.doi.org/10.1515/9781400882083-021.
Der volle Inhalt der QuelleBridson, Martin. „Cube complexes, subgroups of mapping class groups, and nilpotent genus“. In Geometric Group Theory, 379–99. Providence, Rhode Island: American Mathematical Society, 2014. http://dx.doi.org/10.1090/pcms/021/11.
Der volle Inhalt der QuellePutman, Andrew. „The Torelli group and congruence subgroups of the mapping class group“. In Moduli Spaces of Riemann Surfaces, 169–96. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/pcms/020/06.
Der volle Inhalt der QuelleMosher, Lee. „Schottky Subgroups of Mapping Class Groups and the Geometry of Surface-by-Free Groups“. In Rigidity in Dynamics and Geometry, 309–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04743-9_16.
Der volle Inhalt der Quelle„The automorphism group of a free group is not subgroup separable“. In Knots, Braids, and Mapping Class Groups—Papers Dedicated to Joan S. Birman, 23–27. Providence, Rhode Island: American Mathematical Society, 2001. http://dx.doi.org/10.1090/amsip/024/02.
Der volle Inhalt der Quelle