Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Many-body methods.

Zeitschriftenartikel zum Thema „Many-body methods“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Many-body methods" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Schäfer, T., C. W. Kao und S. R. Cotanch. „Many body methods and effective field theory“. Nuclear Physics A 762, Nr. 1-2 (November 2005): 82–101. http://dx.doi.org/10.1016/j.nuclphysa.2005.08.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Stewart, I. „Symmetry methods in collisionless many-body problems“. Journal of Nonlinear Science 6, Nr. 6 (November 1996): 543–63. http://dx.doi.org/10.1007/bf02434056.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

CARDY, JOHN. „EXACT RESULTS FOR MANY-BODY PROBLEMS USING FEW-BODY METHODS“. International Journal of Modern Physics B 20, Nr. 19 (30.07.2006): 2595–602. http://dx.doi.org/10.1142/s0217979206035072.

Der volle Inhalt der Quelle
Annotation:
Recently there has been developed a new approach to the study of critical quantum systems in 1+1 dimensions which reduces them to problems in one-dimensional Brownian motion. This goes under the name of stochastic, or Schramm, Loewner Evolution (SLE). I review some of the recent progress in this area, from the point of view of many-body theory. Connections to random matrices also emerge.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kaldor, Uzi. „Multireference many-body methods. Perspective on "Linked-cluster expansions for the nuclear many-body problem"“. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 103, Nr. 3-4 (09.02.2000): 276–77. http://dx.doi.org/10.1007/s002149900014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Viviani, M. „Few- and many-body methods in nuclear physics“. European Physical Journal A 31, Nr. 4 (März 2007): 429–34. http://dx.doi.org/10.1140/epja/i2006-10263-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Drut, Joaquín E., und Amy N. Nicholson. „Lattice methods for strongly interacting many-body systems“. Journal of Physics G: Nuclear and Particle Physics 40, Nr. 4 (12.03.2013): 043101. http://dx.doi.org/10.1088/0954-3899/40/4/043101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Pulay, P., und S. Sæbø. „Variational CEPA: Comparison with different many-body methods“. Chemical Physics Letters 117, Nr. 1 (Mai 1985): 37–41. http://dx.doi.org/10.1016/0009-2614(85)80400-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Nieves, J. „Quantum field theoretical methods in many body systems“. Czechoslovak Journal of Physics 46, Nr. 7-8 (Juli 1996): 673–720. http://dx.doi.org/10.1007/bf01692562.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lewin, Mathieu. „Geometric methods for nonlinear many-body quantum systems“. Journal of Functional Analysis 260, Nr. 12 (Juni 2011): 3535–95. http://dx.doi.org/10.1016/j.jfa.2010.11.017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gutfreund, H. „Applications of many body methods to large molecules“. Journal of Polymer Science Part C: Polymer Symposia 29, Nr. 1 (07.03.2007): 95–108. http://dx.doi.org/10.1002/polc.5070290113.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Sapirstein, J. „Theoretical methods for the relativistic atomic many-body problem“. Reviews of Modern Physics 70, Nr. 1 (01.01.1998): 55–76. http://dx.doi.org/10.1103/revmodphys.70.55.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Anghel, Dragos Victor, Doru Sabin Delion und Gheorghe Sorin Paraoanu. „Advanced many-body and statistical methods in mesoscopic systems“. Journal of Physics: Conference Series 338 (27.02.2012): 011001. http://dx.doi.org/10.1088/1742-6596/338/1/011001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Theodossiades, S., M. Teodorescu und H. Rahnejat. „From multi-body to many-body dynamics“. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223, Nr. 12 (21.10.2009): 2835–47. http://dx.doi.org/10.1243/09544062jmes1688.

Der volle Inhalt der Quelle
Annotation:
This article provides a brief historical review of multi-body dynamics analysis, initiated by the Newtonian axioms through constrained ( removed degrees of freedom) Lagrangian dynamics or restrained ( resisted degrees of freedom) Newton—Euler formulation. It provides a generic formulation method, based on system dynamics in a reduced configuration space, which encompasses both the aforementioned methods and is applicable to any cluster of material points. A detailed example is provided to show the integration of other physical phenomena such as flexibility and acoustic wave propagation into multi-body dynamics analysis. It is shown that in the scale of minutiae, when the action potentials deviate from Newtonian laws, the forces are often described by empirical or stochastic functions of separation and the medium of interactions. These make for complex analyses and distinguish a host of many body problems from Newtonian laws of motion. A simple example is provided to demonstrate this. It is suggested that unification of many-body analysis with that of multi-body dynamics is incumbent on the fundamental understanding of interaction potentials at close separations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Doran, Alexander E., und So Hirata. „Convergence acceleration of Monte Carlo many-body perturbation methods by using many control variates“. Journal of Chemical Physics 153, Nr. 9 (07.09.2020): 094108. http://dx.doi.org/10.1063/5.0020584.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Botti, Silvana, David Kammerlander und Miguel A. L. Marques. „Band structures of Cu2ZnSnS4 and Cu2ZnSnSe4 from many-body methods“. Applied Physics Letters 98, Nr. 24 (13.06.2011): 241915. http://dx.doi.org/10.1063/1.3600060.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Sekino, Hideo, und Rodney J. Bartlett. „Nuclear spin–spin coupling constants evaluated using many body methods“. Journal of Chemical Physics 85, Nr. 7 (Oktober 1986): 3945–49. http://dx.doi.org/10.1063/1.450916.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Salter, E. A., Gary W. Trucks und Rodney J. Bartlett. „Analytic energy derivatives in many‐body methods. I. First derivatives“. Journal of Chemical Physics 90, Nr. 3 (Februar 1989): 1752–66. http://dx.doi.org/10.1063/1.456069.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Salter, E. A., und Rodney J. Bartlett. „Analytic energy derivatives in many‐body methods. II. Second derivatives“. Journal of Chemical Physics 90, Nr. 3 (Februar 1989): 1767–73. http://dx.doi.org/10.1063/1.456070.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Quiroz, D. A. Amor, P. O. Hess, O. Civitarese und T. Yépez-Martínez. „QCD at low energy: The use of many-body methods“. Journal of Physics: Conference Series 639 (14.09.2015): 012014. http://dx.doi.org/10.1088/1742-6596/639/1/012014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Cole, Samuel J., George D. Purvis und Rodney J. Bartlett. „Singlet-triplet energy gap in methylene using many-body methods“. Chemical Physics Letters 113, Nr. 3 (Januar 1985): 271–74. http://dx.doi.org/10.1016/0009-2614(85)80257-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Solovyev, I. V. „Combining DFT and many-body methods to understand correlated materials“. Journal of Physics: Condensed Matter 20, Nr. 29 (26.06.2008): 293201. http://dx.doi.org/10.1088/0953-8984/20/29/293201.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Sekino, Hideo, und Rodney J. Bartlett. „Spin density of radicals by finite field many‐body methods“. Journal of Chemical Physics 82, Nr. 9 (Mai 1985): 4225–29. http://dx.doi.org/10.1063/1.448837.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Pausch, R., M. Thies und V. L. Dolman. „Solving the Gross-Neveu model with relativistic many-body methods“. Zeitschrift f�r Physik A Hadrons and Nuclei 338, Nr. 4 (Dezember 1991): 441–53. http://dx.doi.org/10.1007/bf01295773.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Parra-Murillo, Carlos A., Javier Madroñero und Sandro Wimberger. „Exact numerical methods for a many-body Wannier–Stark system“. Computer Physics Communications 186 (Januar 2015): 19–30. http://dx.doi.org/10.1016/j.cpc.2014.09.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Zakrzewski, Vyacheslav G., und Wolfgang von Niessen. „Vectorizable algorithm for green function and many-body perturbation methods“. Journal of Computational Chemistry 14, Nr. 1 (Januar 1993): 13–18. http://dx.doi.org/10.1002/jcc.540140105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Keiter, H., und S. Kilić. „Brillouin-Wigner and Feenberg perturbation methods in many-body theory“. Annalen der Physik 508, Nr. 7 (31.08.2010): 608–24. http://dx.doi.org/10.1002/andp.2065080705.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Song, Jinlin, Qiang Cheng, Bo Zhang, Lu Lu, Xinping Zhou, Zixue Luo und Run Hu. „Many-body near-field radiative heat transfer: methods, functionalities and applications“. Reports on Progress in Physics 84, Nr. 3 (01.03.2021): 036501. http://dx.doi.org/10.1088/1361-6633/abe52b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Vekić, M., und S. R. White. „Determinantal and worldline quantum Monte Carlo methods for many-body systems“. Physical Review B 47, Nr. 24 (15.06.1993): 16131–40. http://dx.doi.org/10.1103/physrevb.47.16131.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Hirata, So, und Kiyoshi Yagi. „Predictive electronic and vibrational many-body methods for molecules and macromolecules“. Chemical Physics Letters 464, Nr. 4-6 (Oktober 2008): 123–34. http://dx.doi.org/10.1016/j.cplett.2008.07.087.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Zhang, Juncheng Harry, Timothy C. Ricard, Cody Haycraft und Srinivasan S. Iyengar. „Weighted-Graph-Theoretic Methods for Many-Body Corrections within ONIOM: Smooth AIMD and the Role of High-Order Many-Body Terms“. Journal of Chemical Theory and Computation 17, Nr. 5 (23.04.2021): 2672–90. http://dx.doi.org/10.1021/acs.jctc.0c01287.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

KUO, T. T. S., und YIHARN TZENG. „AN INTRODUCTORY GUIDE TO GREEN’S FUNCTION METHODS IN NUCLEAR MANY-BODY PROBLEMS“. International Journal of Modern Physics E 03, Nr. 02 (Juni 1994): 523–89. http://dx.doi.org/10.1142/s0218301394000140.

Der volle Inhalt der Quelle
Annotation:
We present an elementary and fairly detailed review of several Green’s function methods for treating nuclear and other many-body systems. We first treat the single-particle Green’s function, by way of which some details concerning linked diagram expansion, rules for evaluating Green’s function diagrams and solution of the Dyson’s integral equation for Green’s function are exhibited. The particle-particle hole-hole (pphh) Green’s function is then considered, and a specific time-blocking technique is discussed. This technique enables us to have a one-frequency Dyson’s equation for the pphh and similarly for other Green’s functions, thus considerably facilitating their calculation. A third type of Green’s function considered is the particle-hole Green’s function. RPA and high order RPA are treated, along with examples for setting up particle-hole RPA equations. A general method for deriving a model-space Dyson’s equation for Green’s functions is discussed. We also discuss a method for determining the normalization of Green’s function transition amplitudes based on its vertex function. Some applications of Green’s function methods to nuclear structure and recent deep inelastic lepton-nucleus scattering are addressed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Jaschke, Daniel, Simone Montangero und Lincoln D. Carr. „One-dimensional many-body entangled open quantum systems with tensor network methods“. Quantum Science and Technology 4, Nr. 1 (06.11.2018): 013001. http://dx.doi.org/10.1088/2058-9565/aae724.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Bischoff, Florian A. „Regularizing the molecular potential in electronic structure calculations. II. Many-body methods“. Journal of Chemical Physics 141, Nr. 18 (14.11.2014): 184106. http://dx.doi.org/10.1063/1.4901022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Prokopenya, A. N. „Hamiltonian normalization in the restricted many-body problem by computer algebra methods“. Programming and Computer Software 38, Nr. 3 (25.05.2012): 156–66. http://dx.doi.org/10.1134/s0361768812030048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Ng, Betty, und D. J. Newman. „Many‐body crystal field calculations. I. Methods of computation and perturbation expansion“. Journal of Chemical Physics 87, Nr. 12 (15.12.1987): 7096–109. http://dx.doi.org/10.1063/1.453354.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Doran, Alexander E., und So Hirata. „Convergence acceleration of Monte Carlo many-body perturbation methods by direct sampling“. Journal of Chemical Physics 153, Nr. 10 (14.09.2020): 104112. http://dx.doi.org/10.1063/5.0020583.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Sun, Jun-Qiang, und Rodney J. Bartlett. „Convergence of many-body perturbation methods with lattice summations in extended systems“. Journal of Chemical Physics 106, Nr. 13 (April 1997): 5554–63. http://dx.doi.org/10.1063/1.473577.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Dinerman, Julie, und Lea F. Santos. „Manipulation of the dynamics of many-body systems via quantum control methods“. New Journal of Physics 12, Nr. 5 (28.05.2010): 055025. http://dx.doi.org/10.1088/1367-2630/12/5/055025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Levin, F. S. „Many-body scattering tehory methods as a basis for moelcular structure calculations“. International Journal of Quantum Chemistry 14, S12 (18.06.2009): 109–30. http://dx.doi.org/10.1002/qua.560140810.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Larder, B., D. O. Gericke, S. Richardson, P. Mabey, T. G. White und G. Gregori. „Fast nonadiabatic dynamics of many-body quantum systems“. Science Advances 5, Nr. 11 (November 2019): eaaw1634. http://dx.doi.org/10.1126/sciadv.aaw1634.

Der volle Inhalt der Quelle
Annotation:
Modeling many-body quantum systems with strong interactions is one of the core challenges of modern physics. A range of methods has been developed to approach this task, each with its own idiosyncrasies, approximations, and realm of applicability. However, there remain many problems that are intractable for existing methods. In particular, many approaches face a huge computational barrier when modeling large numbers of coupled electrons and ions at finite temperature. Here, we address this shortfall with a new approach to modeling many-body quantum systems. On the basis of the Bohmian trajectory formalism, our new method treats the full particle dynamics with a considerable increase in computational speed. As a result, we are able to perform large-scale simulations of coupled electron-ion systems without using the adiabatic Born-Oppenheimer approximation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

FURNSTAHL, R. J. „RECENT DEVELOPMENTS IN THE NUCLEAR MANY-BODY PROBLEM“. International Journal of Modern Physics B 17, Nr. 28 (10.11.2003): 5111–26. http://dx.doi.org/10.1142/s0217979203020247.

Der volle Inhalt der Quelle
Annotation:
The study of quantum chromodynamics (QCD) over the past quarter century has had relatively little impact on the traditional approach to the low-energy nuclear many-body problem. Recent developments are changing this situation. New experimental capabilities and theoretical approaches are opening windows into the richness of many-body phenomena in QCD. A common theme is the use of effective field theory (EFT) methods, which exploit the separation of scales in physical systems. At low energies, effective field theory can explain how existing phenomenology emerges from QCD and how to refine it systematically. More generally, the application of EFT methods to many-body problems promises insight into the analytic structure of observables, the identification of new expansion parameters, and a consistent organisation of many-body corrections, with reliable error estimates.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Wu, Dian, Riccardo Rossi, Filippo Vicentini, Nikita Astrakhantsev, Federico Becca, Xiaodong Cao, Juan Carrasquilla et al. „Variational benchmarks for quantum many-body problems“. Science 386, Nr. 6719 (18.10.2024): 296–301. http://dx.doi.org/10.1126/science.adg9774.

Der volle Inhalt der Quelle
Annotation:
The continued development of computational approaches to many-body ground-state problems in physics and chemistry calls for a consistent way to assess its overall progress. In this work, we introduce a metric of variational accuracy, the V-score, obtained from the variational energy and its variance. We provide an extensive curated dataset of variational calculations of many-body quantum systems, identifying cases where state-of-the-art numerical approaches show limited accuracy and future algorithms or computational platforms, such as quantum computing, could provide improved accuracy. The V-score can be used as a metric to assess the progress of quantum variational methods toward a quantum advantage for ground-state problems, especially in regimes where classical verifiability is impossible.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Hu, Haoran. „Numerical study of quantum many body systems“. Advances in Engineering Innovation 13, Nr. 1 (25.10.2024): 1–30. https://doi.org/10.54254/2977-3903/13/2024135.

Der volle Inhalt der Quelle
Annotation:
This paper explores the numerical study of quantum many-body systems with an emphasis on exact diagonalization techniques. The complexity of strongly correlated systems, often governed by large Hilbert spaces, presents significant computational challenges, making exact solutions difficult. In this work, we examine methods to simplify these systems by leveraging techniques such as the Schrieffer-Wolff transformation, which decouples high-energy and low-energy states, and the use of symmetry operators to block-diagonalize Hamiltonians and so on. These approaches are demonstrated with examples such as the hydrogen atom and a lambda system. The second part of the paper focuses on specific case studies, including a one-dimensional spin model and Bose-Hubbard model. The latter is crucial for understanding the behavior of interacting bosons in lattice systems and phenomena such as the superfluid-Mott insulator transition. We present a detailed investigation of the phase diagram for the one-dimensional Bose-Hubbard model using both exact diagonalization and mean field theory, providing insights into its quantum phase transitions. This study underscores the potential of exact diagonalization in quantum simulations and highlights its relevance for experimental setups involving trapped ions and superconducting qubits.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

PANDHARIPANDE, V. R. „RECENT DEVELOPMENTS IN THE NUCLEAR MANY-BODY PROBLEM“. International Journal of Modern Physics B 13, Nr. 05n06 (10.03.1999): 543–58. http://dx.doi.org/10.1142/s0217979299000448.

Der volle Inhalt der Quelle
Annotation:
We review recent developments in a few selected areas of the many-body theory of nuclei and neutron stars. The chosen topics are (i) femtometer toroidal structures in nuclei; (ii) modern models of nuclear forces; (iii) advances in the application of quantum Monte Carlo methods to nuclei; (iv) relativistic boost corrections to nuclear forces; (v) dense nucleon matter; (vi) kaon condensation in neutron star matter; and (vii) the nature of the transition from nucleon to quark matter at high density.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Ciardi, Matteo, Tommaso Macrì und Fabio Cinti. „Zonal Estimators for Quasiperiodic Bosonic Many-Body Phases“. Entropy 24, Nr. 2 (12.02.2022): 265. http://dx.doi.org/10.3390/e24020265.

Der volle Inhalt der Quelle
Annotation:
In this work, we explore the relevant methodology for the investigation of interacting systems with contact interactions, and we introduce a class of zonal estimators for path-integral Monte Carlo methods, designed to provide physical information about limited regions of inhomogeneous systems. We demonstrate the usefulness of zonal estimators by their application to a system of trapped bosons in a quasiperiodic potential in two dimensions, focusing on finite temperature properties across a wide range of values of the potential. Finally, we comment on the generalization of such estimators to local fluctuations of the particle numbers and to magnetic ordering in multi-component systems, spin systems, and systems with nonlocal interactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Fajen, O. Jonathan, und Kurt R. Brorsen. „Multicomponent MP4 and the inclusion of triple excitations in multicomponent many-body methods“. Journal of Chemical Physics 155, Nr. 23 (21.12.2021): 234108. http://dx.doi.org/10.1063/5.0071423.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Amor-Quiroz, D. A., T. Yépez-Martínez, P. O. Hess, O. Civitarese und A. Weber. „Low-energy meson spectrum from a QCD approach based on many-body methods“. International Journal of Modern Physics E 26, Nr. 12 (Dezember 2017): 1750082. http://dx.doi.org/10.1142/s0218301317500823.

Der volle Inhalt der Quelle
Annotation:
The Tamm–Dancoff Approximation (TDA) and Random Phase Approximation (RPA) many-body methods are applied to an effective Quantum Chromodynamics (QCD) Hamiltonian in the Coulomb gauge. The gluon effects in the low-energy domain are accounted for by the Instantaneous color-Coulomb Interaction between color-charge densities, approximated by the sum of a Coulomb ([Formula: see text]) and a confining linear ([Formula: see text]) potential. We use the eigenfunctions of the harmonic oscillator as a basis for the quantization of the quark fields, and discuss how suitable this basis is in various steps of the calculation. We show that the TDA results already reproduce the gross-structure of the light-flavored meson states. The pion-like state, which in the RPA description is a highly collective state, is in better agreement with the experimental value. The results are related to other nonperturbative treatments and compared to experimental data. We discuss the advantages of the present approach.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Brandenburg, Jan Gerit, Andrea Zen, Martin Fitzner, Benjamin Ramberger, Georg Kresse, Theodoros Tsatsoulis, Andreas Grüneis, Angelos Michaelides und Dario Alfè. „Physisorption of Water on Graphene: Subchemical Accuracy from Many-Body Electronic Structure Methods“. Journal of Physical Chemistry Letters 10, Nr. 3 (07.01.2019): 358–68. http://dx.doi.org/10.1021/acs.jpclett.8b03679.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Fedorov, Dmitri G., Naoya Asada, Isao Nakanishi und Kazuo Kitaura. „The Use of Many-Body Expansions and Geometry Optimizations in Fragment-Based Methods“. Accounts of Chemical Research 47, Nr. 9 (21.08.2014): 2846–56. http://dx.doi.org/10.1021/ar500224r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Hartono, Albert, Qingda Lu, Thomas Henretty, Sriram Krishnamoorthy, Huaijian Zhang, Gerald Baumgartner, David E. Bernholdt et al. „Performance Optimization of Tensor Contraction Expressions for Many-Body Methods in Quantum Chemistry†“. Journal of Physical Chemistry A 113, Nr. 45 (12.11.2009): 12715–23. http://dx.doi.org/10.1021/jp9051215.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie