Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Many-body methods“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Many-body methods" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Many-body methods"
Schäfer, T., C. W. Kao und S. R. Cotanch. „Many body methods and effective field theory“. Nuclear Physics A 762, Nr. 1-2 (November 2005): 82–101. http://dx.doi.org/10.1016/j.nuclphysa.2005.08.006.
Der volle Inhalt der QuelleStewart, I. „Symmetry methods in collisionless many-body problems“. Journal of Nonlinear Science 6, Nr. 6 (November 1996): 543–63. http://dx.doi.org/10.1007/bf02434056.
Der volle Inhalt der QuelleCARDY, JOHN. „EXACT RESULTS FOR MANY-BODY PROBLEMS USING FEW-BODY METHODS“. International Journal of Modern Physics B 20, Nr. 19 (30.07.2006): 2595–602. http://dx.doi.org/10.1142/s0217979206035072.
Der volle Inhalt der QuelleKaldor, Uzi. „Multireference many-body methods. Perspective on "Linked-cluster expansions for the nuclear many-body problem"“. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 103, Nr. 3-4 (09.02.2000): 276–77. http://dx.doi.org/10.1007/s002149900014.
Der volle Inhalt der QuelleViviani, M. „Few- and many-body methods in nuclear physics“. European Physical Journal A 31, Nr. 4 (März 2007): 429–34. http://dx.doi.org/10.1140/epja/i2006-10263-9.
Der volle Inhalt der QuelleDrut, Joaquín E., und Amy N. Nicholson. „Lattice methods for strongly interacting many-body systems“. Journal of Physics G: Nuclear and Particle Physics 40, Nr. 4 (12.03.2013): 043101. http://dx.doi.org/10.1088/0954-3899/40/4/043101.
Der volle Inhalt der QuellePulay, P., und S. Sæbø. „Variational CEPA: Comparison with different many-body methods“. Chemical Physics Letters 117, Nr. 1 (Mai 1985): 37–41. http://dx.doi.org/10.1016/0009-2614(85)80400-0.
Der volle Inhalt der QuelleNieves, J. „Quantum field theoretical methods in many body systems“. Czechoslovak Journal of Physics 46, Nr. 7-8 (Juli 1996): 673–720. http://dx.doi.org/10.1007/bf01692562.
Der volle Inhalt der QuelleLewin, Mathieu. „Geometric methods for nonlinear many-body quantum systems“. Journal of Functional Analysis 260, Nr. 12 (Juni 2011): 3535–95. http://dx.doi.org/10.1016/j.jfa.2010.11.017.
Der volle Inhalt der QuelleGutfreund, H. „Applications of many body methods to large molecules“. Journal of Polymer Science Part C: Polymer Symposia 29, Nr. 1 (07.03.2007): 95–108. http://dx.doi.org/10.1002/polc.5070290113.
Der volle Inhalt der QuelleDissertationen zum Thema "Many-body methods"
Wilson, Mark. „Many-body effects in ionic systems“. Thesis, University of Oxford, 1994. http://ora.ox.ac.uk/objects/uuid:3c66daa2-5318-40d2-a445-15296d598a57.
Der volle Inhalt der QuelleSteiger, Don. „Numerical n-body methods in computational chemistry /“. free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9924930.
Der volle Inhalt der QuelleDinh, Thi Hanh Physics Faculty of Science UNSW. „Application of many-body theory methods to atomic problems“. Publisher:University of New South Wales. Physics, 2009. http://handle.unsw.edu.au/1959.4/43734.
Der volle Inhalt der QuelleGerster, Matthias [Verfasser]. „Tensor network methods for quantum many-body simulations / Matthias Gerster“. Ulm : Universität Ulm, 2021. http://d-nb.info/1233737406/34.
Der volle Inhalt der QuelleRichard, Ryan. „Increasing the computational efficiency of ab initio methods with generalized many-body expansions“. The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1385570237.
Der volle Inhalt der QuelleMolnar, Andras [Verfasser], und Jan von [Akademischer Betreuer] Delft. „Tensor Network methods in many-body physics / Andras Molnar ; Betreuer: Jan von Delft“. München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1185979328/34.
Der volle Inhalt der QuelleBlandon, Juan. „DEVELOPMENT OF THEORETICAL AND COMPUTATIONAL METHODS FOR FEW-BODY PROCESSES IN ULTRACOLD QUANTUM GASES“. Master's thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2881.
Der volle Inhalt der QuelleM.S.
Department of Physics
Sciences
Physics
Motta, M. „DYNAMICAL PROPERTIES OF MANY--BODY SYSTEMS FROM CONFIGURATIONAL AND DETERMINANTAL QUANTUM MONTE CARLO METHODS“. Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/345455.
Der volle Inhalt der QuelleHoltz, Susan Lady. „Liouville resolvent methods applied to highly correlated systems“. Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/49795.
Der volle Inhalt der QuelleScalesi, Alberto. „On the characterization of nuclear many-body correlations in the ab initio approach“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP070.
Der volle Inhalt der QuelleThe 'ab initio' branch of nuclear structure theory has traditionally focused on the study of light to mid-mass nuclei and primarily spherical systems. Current developments aim at extending this focus to heavy-mass nuclei and doubly open-shell systems. The study of such systems is qualitatively and quantitatively challenging. Hence, different strategies must be designed to efficiently capture the dominant correlations that most significantly impact the observables of interest. While in principle exact methods exist to solve the non-relativistic Schrödinger equation for a given Nuclear Hamiltonian, practical limitations in numerical simulations make such an approach impossible for most isotopes. This calls for a hierarchical characterization of the main correlations at play in the various nuclear systems. Most ab initio techniques rely on an initial mean-field calculation, typically carried out via the Hartree-Fock (HF) method, which provide a reference state containing the principal part of the correlations contributing to bulk nuclear properties. When tackling open-shell systems, it has been proven particularly convenient to break symmetries at mean-field level to effectively include the static correlations arising in superfluid (via HF-Bogoliubov theory, HFB) or deformed nuclei (via deformed HF, dHF). The present work contributes to this research line by proposing end exploring novel symmetry-breaking many-body techniques applicable to all nuclear systems. The simplest ab initio technique that can be applied on top of the mean-field is many-body perturbation theory. The first result of this work is the demonstration that symmetry-breaking perturbation theory (dBMBPT) based on state-of-the-art nuclear interactions can already qualitatively describe the main nuclear observables, such as ground-state energies and radii. Given that perturbation theory constitutes a cheap and efficient way to perform systematic studies of different nuclei across the nuclear chart, a part of the present work is dedicated to pave the way to such large-scale calculations. In order to push many-body calculations to higher precision, a novel ab initio technique is then introduced, namely the deformed Dyson Self-Consistent Green's function (dDSCGF) method. Such a non-perturbative (i.e., resumming an infinite number of perturbation-theory contributions) approach allows one to compute a wide variety of quantities of interest, both for the ground state of the targeted nucleus and for excited states of neighbouring systems. In addition, it naturally bridges to nuclear reactions giving access to, e.g., the evaluation of optical potentials. Given the high computational cost of non-perturbative many-body methods, the final section introduces possible approaches to make such calculations more efficient. In particular, the Natural Orbital basis is introduced and investigated in the context of deformed systems. Eventually, it is proven that this technique enables the use of much smaller basis sets, thus significantly decreasing the final cost of numerical simulations and enlarging their reach. All together, the developments reported in the present work open up new and promising possibilities for the ab initio description of heavy-mass and open-shell nuclei
Bücher zum Thema "Many-body methods"
Kaldor, U., Hrsg. Many-Body Methods in Quantum Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-93424-7.
Der volle Inhalt der QuellePaul, Gibbon, Hrsg. Many-body tree methods in physics. Cambridge: Cambridge University Press, 1996.
Den vollen Inhalt der Quelle findenHubac, Ivan, und Stephen Wilson. Brillouin-Wigner Methods for Many-Body Systems. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3373-4.
Der volle Inhalt der Quelle1950-, Wilson S. (Stephen), Hrsg. Brillouin-Wigner methods for many-body systems. Dordrecht: Springer, 2010.
Den vollen Inhalt der Quelle findenSchirmer, Jochen. Many-Body Methods for Atoms, Molecules and Clusters. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93602-4.
Der volle Inhalt der QuelleD, Brewer William, und SpringerLink (Online service), Hrsg. Fundamentals of Many-body Physics: Principles and Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Den vollen Inhalt der Quelle findenNATO Advanced Study Institute on Dynamics : Models and Kinetic Methods for Non-equilibrium Many Body Systems (1998 Lorentz Institute, Leiden University). Dynamics: Models and kinetic methods for non-equilibrium many body systems. Dordrecht: Kluwer Academic Publishers, 2000.
Den vollen Inhalt der Quelle findenMukherjee, Debashis, Hrsg. Applied Many-Body Methods in Spectroscopy and Electronic Structure. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4757-9256-0.
Der volle Inhalt der QuelleKarkheck, John. Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. Dordrecht: Springer Netherlands, 2002.
Den vollen Inhalt der Quelle findenKarkheck, John, Hrsg. Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-011-4365-3.
Der volle Inhalt der QuelleBuchteile zum Thema "Many-body methods"
Ceperley, D. M., und M. H. Kalos. „Quantum Many-Body Problems“. In Monte Carlo Methods in Statistical Physics, 145–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82803-4_4.
Der volle Inhalt der QuelleQuiney, Harry M. „Relativistic Many-Body Perturbation Theory“. In Methods in Computational Chemistry, 227–78. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0711-2_5.
Der volle Inhalt der QuelleTrugman, S. A. „General Many-Body Systems“. In Applications of Statistical and Field Theory Methods to Condensed Matter, 253–63. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5763-6_22.
Der volle Inhalt der QuelleMartin, Philippe A., und François Rothen. „Perturbative Methods in Many-Body Problems“. In Many-Body Problems and Quantum Field Theory, 393–422. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08490-8_10.
Der volle Inhalt der QuelleMartin, Philippe A., und François Rothen. „Perturbative Methods in Many-Body Problems“. In Many-Body Problems and Quantum Field Theory, 401–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04894-8_10.
Der volle Inhalt der QuelleMontangero, Simone. „Many-Body Quantum Systems at Equilibrium“. In Introduction to Tensor Network Methods, 97–108. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01409-4_7.
Der volle Inhalt der QuelleBirman, Joseph L., und Allan I. Solomon. „Dynamic Symmetry in Many-Body Problem“. In Group Theoretical Methods in Physics. Volume II, 61–69. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003580850-4.
Der volle Inhalt der QuelleHubač, Ivan, und Stephen Wilson. „Brillouin-Wigner Methods for Many-Body Systems“. In Brillouin-Wigner Methods for Many-Body Systems, 133–89. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3373-4_4.
Der volle Inhalt der QuelleStewart, I. „Symmetry Methods in Collisionless Many-Body Problems“. In Mechanics: From Theory to Computation, 313–33. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1246-1_12.
Der volle Inhalt der QuelleMartin, Philippe A., und François Rothen. „Perturbative Methods in Field Theory“. In Many-Body Problems and Quantum Field Theory, 325–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08490-8_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Many-body methods"
Markussen, Troels, Petr A. Khomyakov, Brecht Verstichel, Anders Blom und Rasmus Faber. „Band Alignment in GAA Nanosheet Structures from Density Dependent Hybrid Functional and Many-Body GW Methods“. In 2024 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 01–04. IEEE, 2024. http://dx.doi.org/10.1109/sispad62626.2024.10732914.
Der volle Inhalt der QuelleCARDY, JOHN. „EXACT RESULTS FOR MANY-BODY PROBLEMS USING FEW-BODY METHODS“. In Proceedings of the 12th International Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772893_0005.
Der volle Inhalt der QuelleHoriuchi, H., M. Kamimura, H. Toki, Y. Fujiwara, M. Matsuo und Y. Sakuragi. „Innovative Computational Methods in Nuclear Many-Body Problems“. In XVII RCNP International Symposium. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814528405.
Der volle Inhalt der QuelleSEDRAKIAN, ARMEN, und JOHN W. CLARK. „MANY-BODY METHODS FOR NUCLEAR SYSTEMS AT SUBNUCLEAR DENSITIES“. In Proceedings of the 14th International Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812779885_0017.
Der volle Inhalt der QuelleDas, M. P. „DENSITY FUNCTIONAL THEORY: MANY-BODY EFFECTS WITHOUT TEARS“. In Proceedings of the Miniworkshop on “Methods of Electronic Structure Calculations” and Working Group on “Disordered Alloys”. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814503778_0001.
Der volle Inhalt der QuelleSchachenmayer, Johannes. „Exploring Quantum Many-Body Spin Dynamics with Truncated Wigner Methods“. In Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/laop.2016.ltu5b.4.
Der volle Inhalt der Quelle„Preface: Symmetries and Order: Algebraic Methods in Many-Body Systems“. In Symmetries and Order: Algebraic Methods in Many Body Systems: A symposium in celebration of the career of Professor Francesco Iachello. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5124570.
Der volle Inhalt der Quelle„Dedication: Symmetries and Order: Algebraic Methods in Many-Body Systems“. In Symmetries and Order: Algebraic Methods in Many Body Systems: A symposium in celebration of the career of Professor Francesco Iachello. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5124571.
Der volle Inhalt der QuelleCejnar, Pavel, Pavel Stránský, Michal Kloc und Michal Macek. „Static vs. dynamic phases of quantum many-body systems“. In Symmetries and Order: Algebraic Methods in Many Body Systems: A symposium in celebration of the career of Professor Francesco Iachello. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5124589.
Der volle Inhalt der QuelleDraayer, J. P., K. D. Sviratcheva, C. Bahri und A. I. Georgieva. „On the Physical Significance of q-deformation in Many-body Physics“. In Proceedings of the 23rd International Conference of Differential Geometric Methods in Theoretical Physics. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772527_0012.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Many-body methods"
Bartlett, Rodney J. Molecular Interactions and Properties with Many-Body Methods. Fort Belvoir, VA: Defense Technical Information Center, April 1990. http://dx.doi.org/10.21236/ada222631.
Der volle Inhalt der QuelleBartlett, Rodney J. Development of Many-Body Methods for Flame Chemistry and Large Molecule Applications. Fort Belvoir, VA: Defense Technical Information Center, Mai 1987. http://dx.doi.org/10.21236/ada184451.
Der volle Inhalt der QuelleMillis, Andrew. Many Body Methods from Chemistry to Physics: Novel Computational Techniques for Materials-Specific Modelling: A Computational Materials Science and Chemistry Network. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1332662.
Der volle Inhalt der QuelleUnderwood, H., Madison Hand, Donald Leopold, Madison Hand, Donald Leopold und H. Underwood. Abundance and distribution of white-tailed deer on First State National Historical Park and surrounding lands. National Park Service, 2024. http://dx.doi.org/10.36967/2305428.
Der volle Inhalt der QuelleRuprah, Inder J., und Luis Marcano. Does Technical Assistance Matter?: An Impact Evaluation Approach to Estimate its Value Added. Inter-American Development Bank, Januar 2009. http://dx.doi.org/10.18235/0011138.
Der volle Inhalt der QuelleSappington, Jayne, Esther De León, Sara Schumacher, Kimberly Vardeman, Donell Callender, Marina Oliver, Hillary Veeder und Laura Heinz. Library Impact Research Report: Educating and Empowering a Diverse Student Body: Supporting Diversity, Equity, and Inclusion Research through Library Collections. Association of Research Libraries, Juli 2022. http://dx.doi.org/10.29242/report.texastech2022.
Der volle Inhalt der QuelleHalker Singh, Rashmi B., Juliana H. VanderPluym, Allison S. Morrow, Meritxell Urtecho, Tarek Nayfeh, Victor D. Torres Roldan, Magdoleen H. Farah et al. Acute Treatments for Episodic Migraine. Agency for Healthcare Research and Quality (AHRQ), Dezember 2020. http://dx.doi.org/10.23970/ahrqepccer239.
Der volle Inhalt der QuelleSharp, Sarah M., Michael J. Moore, Craig A. Harms, Sarah M. Wilkin, W. Brian Sharp, Kristen M. Patchett und Kathryn S. Rose. Report of the live large whale stranding response workshop. Woods Hole Oceanographic Institution, November 2024. http://dx.doi.org/10.1575/1912/70889.
Der volle Inhalt der QuelleLunn, Pete, Marek Bohacek, Jason Somerville, Áine Ní Choisdealbha und Féidhlim McGowan. PRICE Lab: An Investigation of Consumers’ Capabilities with Complex Products. ESRI, Mai 2016. https://doi.org/10.26504/bkmnext306.
Der volle Inhalt der QuelleBeason, Scott, Taylor Kenyon, Robert Jost und Laurent Walker. Changes in glacier extents and estimated changes in glacial volume at Mount Rainier National Park, Washington, USA from 1896 to 2021. National Park Service, Juni 2023. http://dx.doi.org/10.36967/2299328.
Der volle Inhalt der Quelle