Zeitschriftenartikel zum Thema „Mandelbrot sets“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Mandelbrot sets" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
LIU, XIANG-DONG, ZHI-JIE LI, XUE-YE ANG, and JIN-HAI ZHANG. "MANDELBROT AND JULIA SETS OF ONE-PARAMETER RATIONAL FUNCTION FAMILIES ASSOCIATED WITH NEWTON'S METHOD." Fractals 18, no. 02 (June 2010): 255–63. http://dx.doi.org/10.1142/s0218348x10004841.
Der volle Inhalt der QuelleMu, Beining. "Fuzzy Julia Sets and Fuzzy Superior Julia Sets." Highlights in Science, Engineering and Technology 72 (December 15, 2023): 375–80. http://dx.doi.org/10.54097/5c5hp748.
Der volle Inhalt der QuelleJha, Ketan, and Mamta Rani. "Control of Dynamic Noise in Transcendental Julia and Mandelbrot Sets by Superior Iteration Method." International Journal of Natural Computing Research 7, no. 2 (April 2018): 48–59. http://dx.doi.org/10.4018/ijncr.2018040104.
Der volle Inhalt der QuelleDanca, Marius-F. "Mandelbrot Set as a Particular Julia Set of Fractional Order, Equipotential Lines and External Rays of Mandelbrot and Julia Sets of Fractional Order." Fractal and Fractional 8, no. 1 (January 19, 2024): 69. http://dx.doi.org/10.3390/fractalfract8010069.
Der volle Inhalt der QuelleTassaddiq, Asifa, Muhammad Tanveer, Muhammad Azhar, Waqas Nazeer, and Sania Qureshi. "A Four Step Feedback Iteration and Its Applications in Fractals." Fractal and Fractional 6, no. 11 (November 9, 2022): 662. http://dx.doi.org/10.3390/fractalfract6110662.
Der volle Inhalt der QuelleYan, De Jun, Xiao Dan Wei, Hong Peng Zhang, Nan Jiang, and Xiang Dong Liu. "Fractal Structures of General Mandelbrot Sets and Julia Sets Generated from Complex Non-Analytic Iteration Fm(z)=z¯m+c." Applied Mechanics and Materials 347-350 (August 2013): 3019–23. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.3019.
Der volle Inhalt der QuelleKOZMA, ROBERT T., and ROBERT L. DEVANEY. "Julia sets converging to filled quadratic Julia sets." Ergodic Theory and Dynamical Systems 34, no. 1 (August 21, 2012): 171–84. http://dx.doi.org/10.1017/etds.2012.115.
Der volle Inhalt der QuelleAl-Salami, Hassanein Q. "Some Properties of the Mandelbrot Sets M(Q_α)". JOURNAL OF UNIVERSITY OF BABYLON for Pure and Applied Sciences 31, № 2 (29 червня 2023): 263–69. http://dx.doi.org/10.29196/jubpas.v31i2.4683.
Der volle Inhalt der QuelleSekovanov, Valeriy S., Larisa B. Rybina, and Kseniya Yu Strunkina. "The study of the frames of Mandelbrot sets of polynomials of the second degree as a means of developing the originality of students' thinking." Vestnik Kostroma State University. Series: Pedagogy. Psychology. Sociokinetics, no. 4 (2019): 193–99. http://dx.doi.org/10.34216/2073-1426-2019-25-4-193-199.
Der volle Inhalt der QuelleWang, Feng Ying, Li Ming Du, and Zi Yang Han. "The Construction for Generalized Mandelbrot Sets of the Frieze Group." Advanced Materials Research 756-759 (September 2013): 2562–66. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.2562.
Der volle Inhalt der QuelleKauko, Virpi. "Shadow trees of Mandelbrot sets." Fundamenta Mathematicae 180, no. 1 (2003): 35–87. http://dx.doi.org/10.4064/fm180-1-4.
Der volle Inhalt der QuelleSun, Y. Y., and X. Y. Wang. "Noise-perturbed quaternionic Mandelbrot sets." International Journal of Computer Mathematics 86, no. 12 (December 2009): 2008–28. http://dx.doi.org/10.1080/00207160903131228.
Der volle Inhalt der QuelleWang, Xingyuan, Zhen Wang, Yahui Lang, and Zhenfeng Zhang. "Noise perturbed generalized Mandelbrot sets." Journal of Mathematical Analysis and Applications 347, no. 1 (November 2008): 179–87. http://dx.doi.org/10.1016/j.jmaa.2008.04.032.
Der volle Inhalt der QuelleJha, Ketan, and Mamta Rani. "Estimation of Dynamic Noise in Mandelbrot Map." International Journal of Artificial Life Research 7, no. 2 (July 2017): 1–20. http://dx.doi.org/10.4018/ijalr.2017070101.
Der volle Inhalt der QuelleCHEN, YI-CHIUAN, TOMOKI KAWAHIRA, HUA-LUN LI, and JUAN-MING YUAN. "FAMILY OF INVARIANT CANTOR SETS AS ORBITS OF DIFFERENTIAL EQUATIONS II: JULIA SETS." International Journal of Bifurcation and Chaos 21, no. 01 (January 2011): 77–99. http://dx.doi.org/10.1142/s0218127411028295.
Der volle Inhalt der QuelleAshish, Mamta Rani, and Renu Chugh. "Julia sets and Mandelbrot sets in Noor orbit." Applied Mathematics and Computation 228 (February 2014): 615–31. http://dx.doi.org/10.1016/j.amc.2013.11.077.
Der volle Inhalt der QuelleDOLOTIN, V., and A. MOROZOV. "ON THE SHAPES OF ELEMENTARY DOMAINS OR WHY MANDELBROT SET IS MADE FROM ALMOST IDEAL CIRCLES?" International Journal of Modern Physics A 23, no. 22 (September 10, 2008): 3613–84. http://dx.doi.org/10.1142/s0217751x08040330.
Der volle Inhalt der QuelleMork, Leah K., and Darin J. Ulness. "Visualization of Mandelbrot and Julia Sets of Möbius Transformations." Fractal and Fractional 5, no. 3 (July 17, 2021): 73. http://dx.doi.org/10.3390/fractalfract5030073.
Der volle Inhalt der QuelleWANG, XING-YUAN, QING-YONG LIANG, and JUAN MENG. "CHAOS AND FRACTALS IN C–K MAP." International Journal of Modern Physics C 19, no. 09 (September 2008): 1389–409. http://dx.doi.org/10.1142/s0129183108012935.
Der volle Inhalt der QuelleLIAW, SY-SANG. "FIND THE MANDELBROT-LIKE SETS IN ANY MAPPING." Fractals 10, no. 02 (June 2002): 137–46. http://dx.doi.org/10.1142/s0218348x02001282.
Der volle Inhalt der QuelleYAN, DEJUN, XIANGDONG LIU, and WEIYONG ZHU. "A STUDY OF MANDELBROT AND JULIA SETS GENERATED FROM A GENERAL COMPLEX CUBIC ITERATION." Fractals 07, no. 04 (December 1999): 433–37. http://dx.doi.org/10.1142/s0218348x99000438.
Der volle Inhalt der QuelleBUCHANAN, WALTER, JAGANNATHAN GOMATAM, and BONNIE STEVES. "GENERALIZED MANDELBROT SETS FOR MEROMORPHIC COMPLEX AND QUATERNIONIC MAPS." International Journal of Bifurcation and Chaos 12, no. 08 (August 2002): 1755–77. http://dx.doi.org/10.1142/s0218127402005443.
Der volle Inhalt der QuelleAbbas, Mujahid, Hira Iqbal, and Manuel De la Sen. "Generation of Julia and Mandelbrot Sets via Fixed Points." Symmetry 12, no. 1 (January 2, 2020): 86. http://dx.doi.org/10.3390/sym12010086.
Der volle Inhalt der QuelleBandt, Christoph, and Nguyen Viet Hung. "Fractaln-gons and their Mandelbrot sets." Nonlinearity 21, no. 11 (October 10, 2008): 2653–70. http://dx.doi.org/10.1088/0951-7715/21/11/009.
Der volle Inhalt der QuelleSHIAH, AICHYUN, KIM-KHOON ONG, and ZDZISLAW E. MUSIELAK. "FRACTAL IMAGES OF GENERALIZED MANDELBROT SETS." Fractals 02, no. 01 (March 1994): 111–21. http://dx.doi.org/10.1142/s0218348x94000107.
Der volle Inhalt der QuellePickover, Clifford A. "A note on inverted mandelbrot sets." Visual Computer 6, no. 4 (July 1990): 227–29. http://dx.doi.org/10.1007/bf02341047.
Der volle Inhalt der QuelleZhang, Yongping, and Weihua Sun. "Synchronization and coupling of Mandelbrot sets." Nonlinear Dynamics 64, no. 1-2 (October 9, 2010): 59–63. http://dx.doi.org/10.1007/s11071-010-9845-9.
Der volle Inhalt der QuelleWang, Xing-yuan, Pei-jun Chang, and Ni-ni Gu. "Additive perturbed generalized Mandelbrot–Julia sets." Applied Mathematics and Computation 189, no. 1 (June 2007): 754–65. http://dx.doi.org/10.1016/j.amc.2006.11.137.
Der volle Inhalt der QuelleSmirnova, Elena Sa, Valery S. Sekovanov, Larisa B. Rybina, and Roman Al Shchepin. "Performing a multi-stage mathematical information task "Framing the Mandelbrot set of families of polynomials of the third degree and remarkable curves"." Vestnik of Kostroma State University. Series: Pedagogy. Psychology. Sociokinetics 30, no. 1 (June 28, 2024): 63–72. http://dx.doi.org/10.34216/2073-1426-2024-30-1-63-72.
Der volle Inhalt der QuelleZou, Cui, Abdul Aziz Shahid, Asifa Tassaddiq, Arshad Khan, and Maqbool Ahmad. "Mandelbrot Sets and Julia Sets in Picard-Mann Orbit." IEEE Access 8 (2020): 64411–21. http://dx.doi.org/10.1109/access.2020.2984689.
Der volle Inhalt der QuelleFarris, Salma M. "Generalized Mandelbrot Sets of a Family of Polynomials P n z = z n + z + c ; n ≥ 2." International Journal of Mathematics and Mathematical Sciences 2022 (February 22, 2022): 1–9. http://dx.doi.org/10.1155/2022/4510088.
Der volle Inhalt der QuelleWang, Feng Ying, Li Ming Du, and Zi Yang Han. "Two Partitioning Algorithms for Generating of M Sets of the Frieze Group." Applied Mechanics and Materials 336-338 (July 2013): 2238–41. http://dx.doi.org/10.4028/www.scientific.net/amm.336-338.2238.
Der volle Inhalt der QuelleCai, Zong Wen, and Artde D. Kin Tak Lam. "A Study on Mandelbrot Sets to Generate Visual Aesthetic Fractal Patterns." Applied Mechanics and Materials 311 (February 2013): 111–16. http://dx.doi.org/10.4028/www.scientific.net/amm.311.111.
Der volle Inhalt der QuelleWANG, XINGYUAN, QINGYONG LIANG, and JUAN MENG. "DYNAMIC ANALYSIS OF THE CAROTID–KUNDALINI MAP." Modern Physics Letters B 22, no. 04 (February 10, 2008): 243–62. http://dx.doi.org/10.1142/s0217984908014717.
Der volle Inhalt der QuelleKang, Shinmin, Arif Rafiq, Abdul Latif, Abdul Shahid, and Faisal Alif. "Fractals through modified iteration scheme." Filomat 30, no. 11 (2016): 3033–46. http://dx.doi.org/10.2298/fil1611033k.
Der volle Inhalt der QuellePEHERSTORFER, FRANZ, and CHRISTOPH STROH. "JULIA AND MANDELBROT SETS OF CHEBYSHEV FAMILIES." International Journal of Bifurcation and Chaos 11, no. 09 (September 2001): 2463–81. http://dx.doi.org/10.1142/s0218127401003577.
Der volle Inhalt der QuelleMurali, Arunachalam, and Krishnan Muthunagai. "Generation of Julia and Mandelbrot fractals for a generalized rational type mapping via viscosity approximation type iterative method extended with $ s $-convexity." AIMS Mathematics 9, no. 8 (2024): 20221–44. http://dx.doi.org/10.3934/math.2024985.
Der volle Inhalt der QuelleBlankers, Vance, Tristan Rendfrey, Aaron Shukert, and Patrick Shipman. "Julia and Mandelbrot Sets for Dynamics over the Hyperbolic Numbers." Fractal and Fractional 3, no. 1 (February 20, 2019): 6. http://dx.doi.org/10.3390/fractalfract3010006.
Der volle Inhalt der QuelleCheng, Jin, and Jian-rong Tan. "Generalization of 3D Mandelbrot and Julia sets." Journal of Zhejiang University-SCIENCE A 8, no. 1 (January 2007): 134–41. http://dx.doi.org/10.1631/jzus.2007.a0134.
Der volle Inhalt der QuelleQi, Hengxiao, Muhammad Tanveer, Muhammad Shoaib Saleem, and Yuming Chu. "Anti Mandelbrot Sets via Jungck-M Iteration." IEEE Access 8 (2020): 194663–75. http://dx.doi.org/10.1109/access.2020.3033733.
Der volle Inhalt der QuelleÁlvarez, G., M. Romera, G. Pastor, and F. Montoya. "Determination of Mandelbrot Sets Hyperbolic Component Centres." Chaos, Solitons & Fractals 9, no. 12 (December 1998): 1997–2005. http://dx.doi.org/10.1016/s0960-0779(98)00046-0.
Der volle Inhalt der QuelleBeck, Christian. "Physical meaning for Mandelbrot and Julia sets." Physica D: Nonlinear Phenomena 125, no. 3-4 (January 1999): 171–82. http://dx.doi.org/10.1016/s0167-2789(98)00243-7.
Der volle Inhalt der QuelleAgarwal, Rashi, and Vishal Agarwal. "Dynamic noise perturbed generalized superior Mandelbrot sets." Nonlinear Dynamics 67, no. 3 (July 13, 2011): 1883–91. http://dx.doi.org/10.1007/s11071-011-0115-2.
Der volle Inhalt der QuelleZhang, Yong-Ping. "Feedback control and synchronization of Mandelbrot sets." Chinese Physics B 22, no. 1 (January 2013): 010502. http://dx.doi.org/10.1088/1674-1056/22/1/010502.
Der volle Inhalt der QuelleEndler, Antonio, and Paulo C. Rech. "From Mandelbrot-like sets to Arnold tongues." Applied Mathematics and Computation 222 (October 2013): 559–63. http://dx.doi.org/10.1016/j.amc.2013.08.001.
Der volle Inhalt der QuelleRomera, M., G. Pastor, A. B. Orue, D. Arroyo, and F. Montoya. "Coupling Patterns of External Arguments in the Multiple-Spiral Medallions of the Mandelbrot Set." Discrete Dynamics in Nature and Society 2009 (2009): 1–14. http://dx.doi.org/10.1155/2009/135637.
Der volle Inhalt der QuelleTassaddiq, Asifa, Amna Kalsoom, Maliha Rashid, Kainat Sehr, and Dalal Khalid Almutairi. "Generating Geometric Patterns Using Complex Polynomials and Iterative Schemes." Axioms 13, no. 3 (March 18, 2024): 204. http://dx.doi.org/10.3390/axioms13030204.
Der volle Inhalt der QuelleWANG, XING-YUAN, and LI-NA GU. "RESEARCH FRACTAL STRUCTURES OF GENERALIZED M-J SETS USING THREE ALGORITHMS." Fractals 16, no. 01 (March 2008): 79–88. http://dx.doi.org/10.1142/s0218348x08003764.
Der volle Inhalt der QuelleMork, L. K., Trenton Vogt, Keith Sullivan, Drew Rutherford, and Darin J. Ulness. "Exploration of Filled-In Julia Sets Arising from Centered Polygonal Lacunary Functions." Fractal and Fractional 3, no. 3 (July 12, 2019): 42. http://dx.doi.org/10.3390/fractalfract3030042.
Der volle Inhalt der QuelleROCHON, DOMINIC. "A GENERALIZED MANDELBROT SET FOR BICOMPLEX NUMBERS." Fractals 08, no. 04 (December 2000): 355–68. http://dx.doi.org/10.1142/s0218348x0000041x.
Der volle Inhalt der Quelle