Auswahl der wissenschaftlichen Literatur zum Thema „Malware fingerprint“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Malware fingerprint" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Malware fingerprint"

1

Botas, Alvaro, Ricardo J. Rodríguez, Vicente Matellan, Juan F. Garcia, M. T. Trobajo und Miguel V. Carriegos. „On Fingerprinting of Public Malware Analysis Services“. Logic Journal of the IGPL 28, Nr. 4 (07.12.2019): 473–86. http://dx.doi.org/10.1093/jigpal/jzz050.

Der volle Inhalt der Quelle
Annotation:
Abstract Automatic public malware analysis services (PMAS, e.g. VirusTotal, Jotti or ClamAV, to name a few) provide controlled, isolated and virtual environments to analyse malicious software (malware) samples. Unfortunately, malware is currently incorporating techniques to recognize execution onto a virtual or sandbox environment; when an analysis environment is detected, malware behaves as a benign application or even shows no activity. In this work, we present an empirical study and characterization of automatic PMAS, considering 26 different services. We also show a set of features that allow to easily fingerprint these services as analysis environments; the lower the unlikeability of these features, the easier for us (and thus for malware) to fingerprint the analysis service they belong to. Finally, we propose a method for these analysis services to counter or at least mitigate our proposal.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Singh, Jaiteg, Deepak Thakur, Farman Ali, Tanya Gera und Kyung Sup Kwak. „Deep Feature Extraction and Classification of Android Malware Images“. Sensors 20, Nr. 24 (08.12.2020): 7013. http://dx.doi.org/10.3390/s20247013.

Der volle Inhalt der Quelle
Annotation:
The Android operating system has gained popularity and evolved rapidly since the previous decade. Traditional approaches such as static and dynamic malware identification techniques require a lot of human intervention and resources to design the malware classification model. The real challenge lies with the fact that inspecting all files of the application structure leads to high processing time, more storage, and manual effort. To solve these problems, optimization algorithms and deep learning has been recently tested for mitigating malware attacks. This manuscript proposes Summing of neurAl aRchitecture and VisualizatiOn Technology for Android Malware identification (SARVOTAM). The system converts the malware non-intuitive features into fingerprint images to extract the quality information. A fine-tuned Convolutional Neural Network (CNN) is used to automatically extract rich features from visualized malware thus eliminating the feature engineering and domain expert cost. The experiments were done using the DREBIN dataset. A total of fifteen different combinations of the Android malware image sections were used to identify and classify Android malware. The softmax layer of CNN was substituted with machine learning algorithms like K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Random Forest (RF) to analyze the grayscale malware images. It observed that CNN-SVM model outperformed original CNN as well as CNN-KNN, and CNN-RF. The classification results showed that our method is able to achieve an accuracy of 92.59% using Android certificates and manifest malware images. This paper reveals the lightweight solution and much precise option for malware identification.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Białczak, Piotr, und Wojciech Mazurczyk. „Hfinger: Malware HTTP Request Fingerprinting“. Entropy 23, Nr. 5 (23.04.2021): 507. http://dx.doi.org/10.3390/e23050507.

Der volle Inhalt der Quelle
Annotation:
Malicious software utilizes HTTP protocol for communication purposes, creating network traffic that is hard to identify as it blends into the traffic generated by benign applications. To this aim, fingerprinting tools have been developed to help track and identify such traffic by providing a short representation of malicious HTTP requests. However, currently existing tools do not analyze all information included in the HTTP message or analyze it insufficiently. To address these issues, we propose Hfinger, a novel malware HTTP request fingerprinting tool. It extracts information from the parts of the request such as URI, protocol information, headers, and payload, providing a concise request representation that preserves the extracted information in a form interpretable by a human analyst. For the developed solution, we have performed an extensive experimental evaluation using real-world data sets and we also compared Hfinger with the most related and popular existing tools such as FATT, Mercury, and p0f. The conducted effectiveness analysis reveals that on average only 1.85% of requests fingerprinted by Hfinger collide between malware families, what is 8–34 times lower than existing tools. Moreover, unlike these tools, in default mode, Hfinger does not introduce collisions between malware and benign applications and achieves it by increasing the number of fingerprints by at most 3 times. As a result, Hfinger can effectively track and hunt malware by providing more unique fingerprints than other standard tools.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

„Visual Detection for Android Malware using Deep Learning“. Regular 10, Nr. 1 (10.11.2020): 152–56. http://dx.doi.org/10.35940/ijitee.a8132.1110120.

Der volle Inhalt der Quelle
Annotation:
The most serious threats to the current mobile internet are Android Malware. In this paper, we proposed a static analysis model that does not need to understand the source code of the android applications. The main idea is as most of the malware variants are created using automatic tools. Also, there are special fingerprint features for each malware family. According to decompiling the android APK, we mapped the Opcodes, sensitive API packages, and high-level risky API functions into three channels of an RGB image respectively. Then we used the deep learning technique convolutional neural network to identify Android application as benign or as malware. Finally, the proposed model succeeds to detect the entire 200 android applications (100 benign applications and 100 malware applications) with an accuracy of over 99% as shown in experimental results.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Malware fingerprint"

1

Varga, Adam. „Identifikace a charakterizace škodlivého chování v grafech chování“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442388.

Der volle Inhalt der Quelle
Annotation:
Za posledné roky je zaznamenaný nárast prác zahrňujúcich komplexnú detekciu malvéru. Pre potreby zachytenia správania je často vhodné pouziť formát grafov. To je prípad antivírusového programu Avast, ktorého behaviorálny štít deteguje škodlivé správanie a ukladá ich vo forme grafov. Keďže sa jedná o proprietárne riešenie a Avast antivirus pracuje s vlastnou sadou charakterizovaného správania bolo nutné navrhnúť vlastnú metódu detekcie, ktorá bude postavená nad týmito grafmi správania. Táto práca analyzuje grafy správania škodlivého softvéru zachytené behavioralnym štítom antivírusového programu Avast pre proces hlbšej detekcie škodlivého softvéru. Detekcia škodlivého správania sa začína analýzou a abstrakciou vzorcov z grafu správania. Izolované vzory môžu efektívnejšie identifikovať dynamicky sa meniaci malware. Grafy správania sú uložené v databáze grafov Neo4j a každý deň sú zachytené tisíce z nich. Cieľom tejto práce bolo navrhnúť algoritmus na identifikáciu správania škodlivého softvéru s dôrazom na rýchlosť skenovania a jasnosť identifikovaných vzorcov správania. Identifikácia škodlivého správania spočíva v nájdení najdôležitejších vlastností natrénovaných klasifikátorov a následnej extrakcie podgrafu pozostávajúceho iba z týchto dôležitých vlastností uzlov a vzťahov medzi nimi. Následne je navrhnuté pravidlo pre hodnotenie extrahovaného podgrafu. Diplomová práca prebehla v spolupráci so spoločnosťou Avast Software s.r.o.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Malware fingerprint"

1

Botas, Álvaro, Ricardo J. Rodríguez, Vicente Matellán und Juan F. García. „Empirical Study to Fingerprint Public Malware Analysis Services“. In International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding, 589–99. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67180-2_57.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hoffmann, Johannes, Stephan Neumann und Thorsten Holz. „Mobile Malware Detection Based on Energy Fingerprints — A Dead End?“ In Research in Attacks, Intrusions, and Defenses, 348–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41284-4_18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Erichson, N. Benjamin, Dane Taylor, Qixuan Wu und Michael W. Mahoney. „Noise-Response Analysis of Deep Neural Networks Quantifies Robustness and Fingerprints Structural Malware“. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), 100–108. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2021. http://dx.doi.org/10.1137/1.9781611976700.12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Malware fingerprint"

1

Xiaofang, Ban, Chen Li, Hu Weihua und Wu Qu. „Malware variant detection using similarity search over content fingerprint“. In 2014 26th Chinese Control And Decision Conference (CCDC). IEEE, 2014. http://dx.doi.org/10.1109/ccdc.2014.6852216.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie