Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Malaria virulence“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Malaria virulence" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Malaria virulence"
Lin, Jing-wen, Adam J. Reid, Deirdre Cunningham, Ulrike Böhme, Irene Tumwine, Sara Keller-Mclaughlin, Mandy Sanders, Matthew Berriman und Jean Langhorne. „Genomic and transcriptomic comparisons of closely related malaria parasites differing in virulence and sequestration pattern“. Wellcome Open Research 3 (02.11.2018): 142. http://dx.doi.org/10.12688/wellcomeopenres.14797.1.
Der volle Inhalt der QuelleLin, Jing-wen, Adam J. Reid, Deirdre Cunningham, Ulrike Böhme, Irene Tumwine, Sara Keller-Mclaughlin, Mandy Sanders, Matthew Berriman und Jean Langhorne. „Genomic and transcriptomic comparisons of closely related malaria parasites differing in virulence and sequestration pattern“. Wellcome Open Research 3 (06.12.2018): 142. http://dx.doi.org/10.12688/wellcomeopenres.14797.2.
Der volle Inhalt der QuelleDeitsch, Kirk W. „Malaria Virulence Genes“. Cell 121, Nr. 1 (April 2005): 1–2. http://dx.doi.org/10.1016/j.cell.2005.03.019.
Der volle Inhalt der QuelleSchneider, Petra, Andrew S. Bell, Derek G. Sim, Aidan J. O'Donnell, Simon Blanford, Krijn P. Paaijmans, Andrew F. Read und Sarah E. Reece. „Virulence, drug sensitivity and transmission success in the rodent malaria, Plasmodium chabaudi“. Proceedings of the Royal Society B: Biological Sciences 279, Nr. 1747 (26.09.2012): 4677–85. http://dx.doi.org/10.1098/rspb.2012.1792.
Der volle Inhalt der QuellePenman, Bridget, und Sunetra Gupta. „Evolution of virulence in malaria“. Journal of Biology 7, Nr. 6 (2008): 22. http://dx.doi.org/10.1186/jbiol83.
Der volle Inhalt der QuelleMackinnon, Margaret J., und Andrew F. Read. „Virulence in malaria: an evolutionary viewpoint“. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359, Nr. 1446 (29.06.2004): 965–86. http://dx.doi.org/10.1098/rstb.2003.1414.
Der volle Inhalt der QuelleMetcalf, C. J. E., G. H. Long, N. Mideo, J. D. Forester, O. N. Bjørnstad und A. L. Graham. „Revealing mechanisms underlying variation in malaria virulence: effective propagation and host control of uninfected red blood cell supply“. Journal of The Royal Society Interface 9, Nr. 76 (20.06.2012): 2804–13. http://dx.doi.org/10.1098/rsif.2012.0340.
Der volle Inhalt der QuelleNunes-Alves, Cláudio. „Linking virulence and transmission in malaria“. Nature Reviews Microbiology 12, Nr. 10 (08.09.2014): 655. http://dx.doi.org/10.1038/nrmicro3354.
Der volle Inhalt der QuelleMancio-Silva, Liliana, Ksenija Slavic, Margarida T. Grilo Ruivo, Ana Rita Grosso, Katarzyna K. Modrzynska, Iset Medina Vera, Joana Sales-Dias et al. „Nutrient sensing modulates malaria parasite virulence“. Nature 547, Nr. 7662 (Juli 2017): 213–16. http://dx.doi.org/10.1038/nature23009.
Der volle Inhalt der QuelleChookajorn, Thanat, Ron Dzikowski, Matthias Frank, Felomena Li, Alisha Z. Jiwani, Daniel L. Hartl und Kirk W. Deitsch. „Epigenetic memory at malaria virulence genes“. Proceedings of the National Academy of Sciences 104, Nr. 3 (05.01.2007): 899–902. http://dx.doi.org/10.1073/pnas.0609084103.
Der volle Inhalt der QuelleDissertationen zum Thema "Malaria virulence"
Long, Gráinne Helen. „Immunopathology and virulence evolution in rodent malaria“. Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/1962.
Der volle Inhalt der QuellePettersson, Fredrik. „Sequestration, virulence and future interventions in Plasmodium falciparum malaria“. Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-568-2/.
Der volle Inhalt der QuelleHeddini, Andreas. „Endothelial cytoadherence, rosetting and virulence in Plasmodium falciparum malaria /“. Stockholm : [Karolinska institutets bibl.], 2001.
Den vollen Inhalt der Quelle findenTimms, Rebecca. „The ecology and evolution of virulence in mixed infections of malaria parasites“. Thesis, University of Edinburgh, 2001. http://hdl.handle.net/1842/13132.
Der volle Inhalt der QuelleFerguson, Heather M. „The ecology and evolutionary implications of malaria parasite virulence in mosquito vectors“. Thesis, University of Edinburgh, 2002. http://hdl.handle.net/1842/14838.
Der volle Inhalt der QuelleBarclay, Victoria Charlotte. „Studies evaluating the possible evolution of malaria parasites in response to blood-stage vaccination“. Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3996.
Der volle Inhalt der QuelleVardo-Zalik, Anne. „Clonal Diversity of the Malaria Parasite Plasmodium Mexicanum: Diversity Over Time and Space, and Effects on the Parasite’s Transmission, Infection Dynamics and Virulence“. ScholarWorks @ UVM, 2008. http://scholarworks.uvm.edu/graddis/234.
Der volle Inhalt der QuelleCellier-Holzem, Elise. „Ecologie évolutive de la malaria aviaire : approches expérimentales des relations entre Plasmodium relictum et le canari domestique“. Phd thesis, Université de Bourgogne, 2010. http://tel.archives-ouvertes.fr/tel-00665065.
Der volle Inhalt der QuelleDiffendall, Gretchen. „Deciphering the role of an RNA Pol III-transcribed non-coding RNA in Plasmodium falciparum“. Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS443.pdf.
Der volle Inhalt der QuelleThe protozoan parasite Plasmodium falciparum is the causative agent of the deadliest form of human malaria. This pathogen uses monoallelic expression of variant surface adhesion molecules, encoded by the var gene family, to evade the host immune system and cause pathogenesis. It remains unclear how monoallelic expression of var gene activation works at the molecular level and if environmental factors can modulate var gene expression. Our laboratory showed a Pol III transcribed GC-rich non-coding RNA gene family, termed RUF6, acts as a trans-activator of var genes. A physical association between the transcribed RUF6 ncRNA and the active var gene locus was observed through FISH. Transcriptional repression of all RUF6 by a specific CRISPR interference strategy resulted in transcriptional down regulation of the entire var gene family, suggesting a potential enhancer-like function to var gene expression. An understanding of how RUF6 ncRNA mediates var gene activation is lacking. Here we developed a robust RNA-directed proteomic discovery (ChIRP-MS) protocol to identify in vivo RUF6 ncRNA protein interactions. Biotinylated antisense oligonucleotides were used to purify the RUF6 ncRNA interactome. Mass spectrometry identified several uniquely enriched proteins that are linked to gene transcription such as RNA Pol II subunits, nucleosome assembly proteins, and a homologue of the Dead-Box Helicase 5 (DDX5). Affinity purification of PfDDX5 identified several proteins originally found by our RUF6-ChIRP protocol, validating the robustness of the technique for the identification of ncRNA interactomes in P. falciparum. Inducible displacement of nuclear Pf-DDX5 resulted in the significant down-regulation of the active var gene. Our work identifies a RUF6 ncRNA protein complex that interacts with RNA Pol II to sustain var gene expression. We postulate that DDX5 helicase may resolve G-quadruplex secondary structures highly enriched in var genes to facilitate transcriptional activation and progression. Furthermore, we discovered environmental factors that trigger downregulation of var gene transcription. We observe that isoleucine starvation and high MgCl2 concentrations in the medium inhibit RNA Polymerase III transcribed genes. Importantly, this includes a P. falciparum-specific regulatory ncRNA gene family (encoded by the RUF6 gene family) that is a key regulator in var gene activation. We identified a homologous gene to the highly conserved eukaryotic Maf1, as a negative effector of RUF6 ncRNA transcription. Elevated MgCl2 concentrations led to a shift of cytoplasmic PfMaf1 to the nuclear compartment. We used an inducible protein degradation system to show that external stimuli depend on PfMaf1 to trigger lower expression of RUF6 genes. Our results point to a TOR independent pathway that responds to changes in the environment and represses Pol III transcription. This work provides new and important conceptual insights into PfMaf1-dependent repression of parasite virulence that may be highly relevant for establishing subclinical parasite persistence in the dry season. Taken together, these results help to better understand the function and regulation of a ncRNA involved in regulating the antigenic variation and pathogenesis in P. falciparum. Our validation of the ChIRP-MS technique allows for future studies in identifying RNA-binding proteins for ncRNAs whose function remains to be fully characterized
Neal, Aaron T. „Identifying genetic determinants of impaired PfEMP1 export in Plasmodium falciparum-infected erythrocytes“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:0cc3f09c-9178-448b-92f8-8f9564398585.
Der volle Inhalt der QuelleBuchteile zum Thema "Malaria virulence"
Escalante, Ananias A., und Francisco J. Ayala. „Malaria: Host Range, Diversity, and Speciation“. In Evolution of Virulence in Eukaryotic Microbes, 91–110. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118308165.ch5.
Der volle Inhalt der QuelleSu, Xin-Zhuan, und John C. Wootton. „Selective Sweeps in Human Malaria Parasites“. In Evolution of Virulence in Eukaryotic Microbes, 124–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118308165.ch7.
Der volle Inhalt der QuelleSmith, Joseph, und Kirk W. Deitsch. „Antigenic Variation, Adherence, and Virulence in Malaria“. In Evolution of Virulence in Eukaryotic Microbes, 338–61. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118308165.ch18.
Der volle Inhalt der QuelleDuraisingh, Manoj T., Jeffrey D. Dvorin und Peter R. Preiser. „Invasion Ligand Diversity and Pathogenesis in Blood-Stage Malaria“. In Evolution of Virulence in Eukaryotic Microbes, 362–83. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118308165.ch19.
Der volle Inhalt der QuelleVolkman, Sarah K., Daniel E. Neafsey, Stephen F. Schaffner, Pardis C. Sabeti und Dyann F. Wirth. „From Population Genomics to Elucidated Traits inPlasmodium Falciparum: Population Genomics, Genetic Diversity, and Association in Malaria“. In Evolution of Virulence in Eukaryotic Microbes, 111–23. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118308165.ch6.
Der volle Inhalt der QuelleCarter, Richard, und Richard Culleton. „Genetic Mapping of Virulence in Rodent Malarias“. In Evolution of Virulence in Eukaryotic Microbes, 269–84. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118308165.ch14.
Der volle Inhalt der QuelleTsegaye Tseha, Sintayehu. „Plasmodium Species and Drug Resistance“. In Plasmodium Species and Drug Resistance [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98344.
Der volle Inhalt der QuelleGupta, Sunetra, und Karen Day. „Virulence and transmissibility in P. falciparum malaria“. In Models for Infectious Human Diseases, 160–80. Cambridge University Press, 1996. http://dx.doi.org/10.1017/cbo9780511662935.018.
Der volle Inhalt der QuelleEwald, Paul W. „Vectors, Vertical Transmission, and the Evolution of Virulence“. In Evolution of Infectious Disease, 35–56. Oxford University PressNew York, NY, 1994. http://dx.doi.org/10.1093/oso/9780195060584.003.0003.
Der volle Inhalt der Quelle„Malaria Parasite Virulence in Mosquitoes and Its Implications for the Introduction and Efficacy of GMM Malaria Control Programmes“. In Genetically Modified Mosquitoes for Malaria Control, 119–32. CRC Press, 2006. http://dx.doi.org/10.1201/9781498712866-13.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Malaria virulence"
Miranda Mas, Carlos. „Arte vs turistificación: Souvenirs de resistencia“. In V Congreso Internacional de Investigacion en Artes Visuales ANIAV 2022. RE/DES Conectar. València: Editorial Universitat Politècnica de València, 2022. http://dx.doi.org/10.4995/aniav2022.2022.15485.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Malaria virulence"
McElwain, Terry F., Eugene Pipano, Guy H. Palmer, Varda Shkap, Stephn A. Hines und Wendy C. Brown. Protection of Cattle against Babesiosis: Immunization against Babesia bovis with an Optimized RAP-1/Apical Complex Construct. United States Department of Agriculture, September 1999. http://dx.doi.org/10.32747/1999.7573063.bard.
Der volle Inhalt der QuelleLignes directrices pour le contrôle et la prévention de la peste des petits ruminants (PPR) dans les populations de faune sauvage. OIE (World Organisation for Animal Health), Dezember 2021. http://dx.doi.org/10.20506/ppr.3274.
Der volle Inhalt der Quelle