Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Magneto-acoustic“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Magneto-acoustic" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Magneto-acoustic"
AMMARI, HABIB, YVES CAPDEBOSCQ, HYEONBAE KANG und ANASTASIA KOZHEMYAK. „Mathematical models and reconstruction methods in magneto-acoustic imaging“. European Journal of Applied Mathematics 20, Nr. 3 (Juni 2009): 303–17. http://dx.doi.org/10.1017/s0956792509007888.
Der volle Inhalt der QuelleRoth, Bradley J. „Magneto-Acoustic Imaging in Biology“. Applied Sciences 13, Nr. 6 (18.03.2023): 3877. http://dx.doi.org/10.3390/app13063877.
Der volle Inhalt der QuelleQu, Min, Srivalleesha Mallidi, Mohammad Mehrmohammadi, Ryan Truby, Kimberly Homan, Pratixa Joshi, Yun-Sheng Chen, Konstantin Sokolov und Stanislav Emelianov. „Magneto-photo-acoustic imaging“. Biomedical Optics Express 2, Nr. 2 (21.01.2011): 385. http://dx.doi.org/10.1364/boe.2.000385.
Der volle Inhalt der QuelleLi, Jinxing, Tianlong Li, Tailin Xu, Melek Kiristi, Wenjuan Liu, Zhiguang Wu und Joseph Wang. „Magneto–Acoustic Hybrid Nanomotor“. Nano Letters 15, Nr. 7 (19.06.2015): 4814–21. http://dx.doi.org/10.1021/acs.nanolett.5b01945.
Der volle Inhalt der QuelleGuyot, M., und V. Cagan. „The magneto‐acoustic emission (invited)“. Journal of Applied Physics 73, Nr. 10 (15.05.1993): 5348–53. http://dx.doi.org/10.1063/1.353728.
Der volle Inhalt der QuelleDrummond James, E. „5402786 Magneto-acoustic resonance imaging“. Magnetic Resonance Imaging 13, Nr. 6 (Januar 1995): XXIV—XXV. http://dx.doi.org/10.1016/0730-725x(95)96707-i.
Der volle Inhalt der QuelleKhantadze, A. G., G. V. Jandieri, A. Ishimaru, T. D. Kaladze und Zh M. Diasamidze. „Electromagnetic oscillations of the Earth's upper atmosphere (review)“. Annales Geophysicae 28, Nr. 7 (01.07.2010): 1387–99. http://dx.doi.org/10.5194/angeo-28-1387-2010.
Der volle Inhalt der QuelleZharkov, S., S. Shelyag, V. Fedun, R. Erdélyi und M. J. Thompson. „Photospheric high-frequency acoustic power excess in sunspot umbra: signature of magneto-acoustic modes“. Annales Geophysicae 31, Nr. 8 (06.08.2013): 1357–64. http://dx.doi.org/10.5194/angeo-31-1357-2013.
Der volle Inhalt der QuelleAdamashvili, G. T., und A. A. Maradudin. „Nonlinear magneto-acoustic waves in ferromagnets“. Journal of Applied Physics 79, Nr. 8 (1996): 5727. http://dx.doi.org/10.1063/1.362232.
Der volle Inhalt der QuelleSytcheva, A., U. Löw, S. Yasin, J. Wosnitza, S. Zherlitsyn, T. Goto, P. Wyder und B. Lüthi. „Magneto-Acoustic Faraday Effect in Tb3Ga5O12“. Journal of Low Temperature Physics 159, Nr. 1-2 (06.01.2010): 126–29. http://dx.doi.org/10.1007/s10909-009-0082-x.
Der volle Inhalt der QuelleDissertationen zum Thema "Magneto-acoustic"
Kuszewski, Piotr. „Optical detection of magneto-acoustic dynamics“. Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS353.
Der volle Inhalt der QuelleIn the developing field of spin wave-based information technology, this work investigates the possibility to use surface acoustic waves (SAW) to excite spin-waves in ferromagnetic thin layers relying on the magnetoelastic coupling. This would provide a non-inductive, efficient, and remote addressing of spin waves. In the first project we develop an experimental setup to generate electrically excited SAWs phase-locked to probe laser pulses. The magnetization dynamics is detected by an optical bridge using magneto-optical effects (Kerr and Voigt). We investigate the resonant magneto-elastic coupling in a thin film of the ferromagnetic semiconductor (Ga,Mn)As. To reach resonant coupling, the spin-wave frequency is scanned across the SAW frequency using a magnetic field. We disentangle the photoelastic contribution from the magneto-optical one, from which we obtain the amplitude of magnetization precession. We show that it is driven solely by the acoustic wave. Its field dependence is shown to agree well with theoretical calculations. Its amplitude resonates at the same field as the resonant attenuation of the acoustic wave, clearly evidencing the magnetoacoustic resonance with high sensitivity. The influence of temperature, SAW frequency and power on the coupling efficiency are studied. In the second project we use SAWs thermoelastically excited by a tightly focused laser beam on ferromagnetic metals (Ni, FeGa, Co) on a transparent substrate (glass, sapphire). Spatio-temporal maps of the surface displacement and magneto-optical signal are obtained. A high-frequency shift of the frequency spectrum of the latter gives a hint for spin-wave excitation by SAWs
Kennedy, Ian. „Magneto-acoustic response of a 2D carrier system“. Thesis, University of Nottingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285634.
Der volle Inhalt der QuelleButtle, D. J. „Barkhausen and magneto-acoustic emission from ferromagnetic materials“. Thesis, University of Oxford, 1986. http://ora.ox.ac.uk/objects/uuid:73130e7a-43ab-47fb-a531-65b605bf1904.
Der volle Inhalt der QuelleMcEnaney, Kevin Bernard. „Magneto-absorption of surface acoustic waves by a 2-dimensional electron gas“. Thesis, University of Nottingham, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293651.
Der volle Inhalt der QuelleCuellar, Sandra Milena Conde. „3D model magneto-acoustic waves in coronal loops observed during transient events“. Instituto Nacional de Pesquisas Espaciais (INPE), 2017. http://urlib.net/sid.inpe.br/mtc-m21b/2017/05.05.02.33.
Der volle Inhalt der QuelleApresentamos uma análise tridimensional de ondas magnetoacústicas ao longo de sete loops coronais, observados na região ativa NOAA 11272 durante os flares de classe B e C. Encontramos ondas de 19, 9, 5, 2, 1 e 0.6 minutos usando o método Pixelised Wavelet Filtering sobre imagens obtidas com o instrumento Atmospheric Imaging Assembly. Modelamos as velocidades dessas ondas ao longo das linhas de campo magnético extrapoladas que reproduzem os loops observados em ultravioleta extremo. A extrapolação foi feita sobre os magnetogramas obtidos com o instrumento Helioseismic and Magnetic Imager, usando a aproximação Linear Force-Free. A partir do nosso modelo, encontramos temperaturas de 10$^{3}$ (maior equivalente) T (menor equivalente) 1.8 x 10$^{7}$ K e densidades de 10$^{7}$ (maior equivalente) n (menor equivalente) 10$^{17}$ cm$^{−3}$, cobrindo desde a fotosfera até a coroa, como esperado na atmosfera solar. Desta forma, obtivemos valores para as velocidades acústica e Alfvénica de c$_{s}$ $\approx$ 10$^{2}$ km s$^{−1}$ e $\upsilon$$_{A}$ $\approx$ 10$^{4}$ km s$^{−1}$ respectivamente, as quais estão acorde com a literatura. Adicionalmente, a assimetria no brilho observada ao longo dos loops coronais é explicada pelas distribuições do campo magnético e da velocidade Alfvén ao longo das linhas extrapoladas. Nós encontramos ondas magnetoacústicas rápidas no inicio dos flares B3.8 e C1.9 e modos lentos ao longo dos loops durante todos os flares. O nosso modelo representa um método inédito para estudar ondas em loops coronais. Todos os resultados são coerentes com os valores esperados nas condições da atmosfera solar.
Matsouli, Ioanna. „Study of magneto-acoustic effects in FeBOâ†3 by synchrotron radiation diffraction imaging“. Thesis, University of Warwick, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310013.
Der volle Inhalt der QuelleMather, James. „Magneto-acoustic waves in the stratified solar atmosphere : single to multi-fluid approach“. Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/19463/.
Der volle Inhalt der QuelleParpiiev, Tymur. „Ultrafast magneto-acoustics in magnetostrictive materials“. Thesis, Le Mans, 2017. http://www.theses.fr/2017LEMA1044/document.
Der volle Inhalt der QuelleWith the advent of femtosecond lasers it became possible to measure how femtosecond optical demagnetization can probe the exchange interaction in ferromagnetic metals. Laser-induced demagnetization of materials with strong magneto-elastic coupling should lead to the release of its build-in strains, thus to the generation of both longitudinal (L) and shear (S) acoustic waves. In this thesis, generation of shear picosecond acoustic pulses in strongly magnetostrictive materials such as Terfenol is processed analytically and shown experimentally. In case of Terfenol with strong magneto-crystalline anisotropy, laser induced demagnetostriction is responsible for S excitation. First, the phenomenological model of direct magnetostriction in a Terfenol monocrystalline film is developed. The shear strain generation efficiency strongly depends on the orientation of the film magnetization. Time-resolved linear MOKE pump-probe experiments show that transient laser-induced release of the magnetoelastic strains lead to the excitation of GHz L and S acoustic waves. These results are the first experimental observation of picosecond shear acoustic wave excitation by laser-induced demagnetostriction mechanism. Second, the interaction of an optically generated L acoustic pulse with the magnetization of a Terfenol thin film is reported. Arrival of the picosecond strain wave alters a change of its magnetization and leads to acoustic mode conversion, which is another pathway of shear acoustic wave generation. The frequency bandwidth of the generated acoustic pulses matches the demagnetization timescale and lies in the range of several hundreds of GHz, close to 1 THz
Zhou, Huan. „Etude théorique et expérimentale de systèmes à ondes de surface dans des structures multicouches piézomagnétiques pour des applications en contrôle santé intégré de MEMS par imagerie acoustique non linéaire“. Phd thesis, Ecole Centrale de Lille, 2014. http://tel.archives-ouvertes.fr/tel-00991915.
Der volle Inhalt der QuelleNguyen, Christine. „Magneto-Hydrodynamic Activity and Energetic Particles - Application to Beta Alfvén Eigenmodes“. Phd thesis, Ecole Polytechnique X, 2009. http://pastel.archives-ouvertes.fr/pastel-00005642.
Der volle Inhalt der QuelleBücher zum Thema "Magneto-acoustic"
Newnham, Robert E. Properties of Materials. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198520757.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Magneto-acoustic"
Sanchez, Simon W., und Jinxing Li. „Magneto-Acoustic Hybrid Micro-/Nanorobot“. In Field-Driven Micro and Nanorobots for Biology and Medicine, 165–77. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80197-7_7.
Der volle Inhalt der QuelleShen, Yongna, Gongtian Shen und Wenjun Zhang. „The Optimization of Magneto Acoustic Emission Testing Device“. In Springer Proceedings in Physics, 49–55. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12111-2_5.
Der volle Inhalt der QuelleUtrata, David, und Min Namkung. „Magneto-Acoustic Stress Responses of Various Rail Metallurgies“. In Review of Progress in Quantitative Nondestructive Evaluation, 1903–10. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5772-8_244.
Der volle Inhalt der QuelleZhou, Xiaoqing, Huiqin Wang, Ren Ma, Tao Yin, Zhuo Yang und Zhipeng Liu. „Experimental Study on Transcranial Magneto-Acoustic Coupling Stimulation“. In Advances in Cognitive Neurodynamics (VII), 283–84. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0317-4_45.
Der volle Inhalt der QuelleMA, R., S. ZHANG, T. YIN und Z. LIUi. „Experimental Study on Amplitude Frequency of Acoustic Signal Excited by Coupling Magneto-Acoustic Field“. In IFMBE Proceedings, 158–61. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19387-8_38.
Der volle Inhalt der QuelleRuf, T., V. F. Sapega, J. Spitzer, V. I. Belitsky, M. Cardona und K. Ploog. „Resonant Magneto-Raman Scattering by Acoustic Phonons in Quantum Wells and Superlattices“. In Phonons in Semiconductor Nanostructures, 83–92. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1683-1_8.
Der volle Inhalt der QuelleWu, Sha, Gongtian Shen, Zenghua Liu, Yongna Shen und Zhinong Li. „Research on Extraction Method of Fatigue State Magneto Acoustic Emission Characteristic Parameters Based on CEEMD“. In Springer Proceedings in Physics, 171–81. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9837-1_16.
Der volle Inhalt der QuelleLópez, Rafael J. „Magneto-acoustic and Barkhausen Emission in Wide Ribbons of One Magnetic Glass“. In Recent Advances in Multidisciplinary Applied Physics, 325–29. Elsevier, 2005. http://dx.doi.org/10.1016/b978-008044648-6.50052-5.
Der volle Inhalt der QuelleLOPEZ, R. „Magneto-acoustic and barkhausen emission in wide ribbons of one magnetic glass“. In Recent Advances in Multidisciplinary Applied Physics, 325–29. Elsevier, 2005. http://dx.doi.org/10.1016/b978-008044648-6/50052-5.
Der volle Inhalt der QuelleGlukhikh, Igor, Viktor Ivanchenko und Sergey Ivanchenko. „Connection of magneto acoustic emission parameters with conditions of magnetite deposits formation“. In Methods and Applications in Petroleum and Mineral Exploration and Engineering Geology, 257–74. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-323-85617-1.00013-8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Magneto-acoustic"
Gosavi, Tanay A., und Sunti A. Bhave. „Magneto-acoustic oscillator“. In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2017. http://dx.doi.org/10.1109/transducers.2017.7994083.
Der volle Inhalt der QuelleMehrmohammadi, M., Junghwan Oh, S. R. Aglyamov, A. B. Karpiouk und S. Y. Emelianov. „Pulsed magneto-acoustic imaging“. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5334214.
Der volle Inhalt der QuelleMin Qu, S. Mallidi, M. Mehrmohammadi, L. L. Ma, K. P. Johnston, K. Sokolov und S. Emelianov. „Combined photoacoustic and magneto-acoustic imaging“. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5334217.
Der volle Inhalt der QuelleTiwari, Sidhant. „Magneto-Acoustic Waves in Multiferroic Heterostructures .“ In Proposed for presentation at the TANMS ARSM (Advanced Research Strategy Meeting) 2022 held February 8-24, 2022 in ,. US DOE, 2022. http://dx.doi.org/10.2172/2001707.
Der volle Inhalt der QuelleAlmansouri, Abdullah S., Liam Swanepoel, Khaled N. Salama und Jurgen Kosel. „A Self-Powered Magneto-Acoustic Tracking Transducer“. In 2019 IEEE SENSORS. IEEE, 2019. http://dx.doi.org/10.1109/sensors43011.2019.8956781.
Der volle Inhalt der QuelleDhagat, Pallavi, Vikrant Gokhale, Albrecht Jander, Brian Downey, Carson Rivard, Shawn Mack, D. Scott Katzer, Jason Roussos und David Meyer. „RF Signal Processing with Magneto-acoustic Devices“. In 2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers). IEEE, 2023. http://dx.doi.org/10.1109/intermagshortpapers58606.2023.10228303.
Der volle Inhalt der QuelleQu, Min, Mohammad Mehrmohammadi, Ryan Truby, Kimberly Homan und Stanislav Emelianov. „Magneto-photo-acoustic imaging using dual-contrast agent“. In 2010 IEEE Ultrasonics Symposium (IUS). IEEE, 2010. http://dx.doi.org/10.1109/ultsym.2010.5935934.
Der volle Inhalt der QuelleWilkie-Chancellier, N., S. Serfaty, P. Griesmar, Y. Le Diraison und J. Y. Le Huerou. „Inductive magneto-acoustic technique for viscous fluids monitoring“. In 2011 IEEE International Ultrasonics Symposium (IUS). IEEE, 2011. http://dx.doi.org/10.1109/ultsym.2011.0272.
Der volle Inhalt der QuelleBocchialini, Karine, und Serge Koutchmy. „High frequency magneto-acoustic waves in the chromosphere“. In Scientific basis for robotic exploration close to the sun. AIP, 1997. http://dx.doi.org/10.1063/1.51752.
Der volle Inhalt der QuelleZIDAT, Farid, Gregory BAUW, Bertrand CASSORET und Thomas GUFFROY. „Magneto-vibro-acoustic Design of PWM-fed Induction Machines“. In 2019 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF). IEEE, 2019. http://dx.doi.org/10.1109/isef45929.2019.9096884.
Der volle Inhalt der Quelle