Dissertationen zum Thema „Magnetické sondy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-32 Dissertationen für die Forschung zum Thema "Magnetické sondy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Volf, Tomáš. „Analýza magnetického pole pomocí MKP a magnetické sondy“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2010. http://www.nusl.cz/ntk/nusl-218786.
Der volle Inhalt der QuelleNovotný, Ondřej. „Korelovaná sondová a elektronová mikroskopie pro studium moderních magnetických nanomateriálů“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443751.
Der volle Inhalt der QuellePereira, Luciano Fabricio Dias. „"Estudo do campo hiperfino magnético na sonda de Ce colocada nos compostos intermetálicos do tipo RAg (R=Terra Rara) e do ordenamento magnético desses compostos usando cálculos de primeiros princípios"“. Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/85/85131/tde-28052007-141935/.
Der volle Inhalt der QuelleIn this work the magnetic hyper¯ne ¯eld acting on Ce atoms substituting the rare-earths in RAg compounds (R = Gd e Nd) was studied by means of ¯rst-principles electronic structure calculations. The employed method was the Augmented Plane Waves plus local orbitals (APW+lo), embodied in the WIEN2k program, within the framework of the Density Functional Theory (DFT) and with the Generalized Gradient Approximation (GGA) for the exchange and correlation potential. The super-cell approach was utilized in order to simulate for the Ce atoms acting as impurities in the RAg matrix. In order to improve for correlation e®ects within the 4f shells, a Hubbard term was added to the DFT hamiltonian, within a procedure called GGA+U. It was found that the magnetic hyper¯ne ¯eld (MHF) generated by the Ce 4f electron is the main component of the total MHF and that the Ce 4f ground state level is probably a combination of the ml = ¡2 and ml = ¡1 sub-levels. In addition, the ground-state magnetic structure was determined for HoAg and NdAg by observing the behavior of the total energy as a function of the lattice volume v for several possible magnetic ordering in these compounds, namelly, ferromagnetic, and the (0,0,¼), (¼,¼,0) and (¼,¼,¼) types of anti-ferromagnetic ordering of rare-earth atoms. It was found that the ground-state magnetic structure is anti-ferromagnetic of type (¼,¼,0) for both, the HoAg and NdAg compounds. The energy di®erence of the ferromag-netic and antiferromagnetic ordering is very small in the case of the NdAg compound.
Staňo, Michal. „Charakterizace magnetických nanostruktur pomocí mikroskopie magnetických sil“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231312.
Der volle Inhalt der QuelleHejtmánek, Tomáš. „Návrh gaussmetru s tříosou měřicí sondou“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-377096.
Der volle Inhalt der QuelleVaculík, Vlastimil. „Snímače proudu“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219715.
Der volle Inhalt der QuelleDehbaoui, Mourad. „Analyses structurales et contrôle de l'aimantation par sonde de Hall planaire dans des dispositifs nanostructurés“. Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20128/document.
Der volle Inhalt der QuelleIn an effort to combine the benefits of magnetic and electronic properties, diluted magnetic semiconductors are projected to be the basis for devices combining in their operation, both the charge and spin of electrons. Using Hall Effect magnetometer, a characterization of these materials is done by determining the magnetic orientation at low temperatures. We were also interested in molecular materials spin crossover. The magnetic sensor technology provides a path to the extension of detection techniques through the use of rapid and sensitive systems. The detection of the spin crossover nanoparticles is achieved by a planar Hall Effect sensor, made from magnetic multilayers. The work is a pioneer in the field of nano magnetic detection; it opens up new perspectives in basic research and the technological development of magnetic sensors. Improvements of the device have been completed and others are under development in order to improve sensitivity and reduce noise. The optimization should provide a novel system for detecting spin transition nanoparticles at room temperature
Guitard, Pierre-André. „Local Nuclear Magnetic Resonance Spectroscopy with Giant Magnetoresistive Sensors“. Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS175/document.
Der volle Inhalt der QuelleNuclear Magnetic Resonance Spectroscopy (NMRS) is a widely known technique for chemical and biological molecule analysis. However due to the weakness of the NMR signals, it is very difficult to work on volumes lower than a mm³. That limitation has led to the development of miniaturized sensors such as microcoils, NV centers and atomic magnetometers. We will present our approach based on the use of Giant Magnetoresistive sensors (GMR) as wide band magnetic sensors to detect locally the NMR signal. GMR sensors and NMR set up have been specifically designed to have a detectivity in the range of 20pt/sqrt(Hz) and able to work with external magnetic field up to 1T. We will first present the results obtained at 0.3T on water, in the configuration where the local NMR is done on a high volume, highlighting the functionality of the set-up. Then we will show the results obtained also at 0.3T, of NMR spectroscopy of model liquids like Ethanol on a volume of the order of 20x20x20μm³. Finally, a result at a higher magnetic field, 0.6T, has also been obtained on water
Váňa, Dominik. „Využití uměle vytvořeného slabého magnetického pole pro navigaci ve 3D prostoru“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413205.
Der volle Inhalt der QuellePEREIRA, LUCIANO F. D. „Estudo do campo hiperfino magnético na sonda de Ce colocada nos compostos intermetálicos do tipo Rag(R=terra rara) e do ordenamento magnético desses compostos usando cálculos de primeiros princípios“. reponame:Repositório Institucional do IPEN, 2006. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11444.
Der volle Inhalt der QuelleMade available in DSpace on 2014-10-09T14:07:05Z (GMT). No. of bitstreams: 0
Dissertação (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Wolny, Franziska. „Magnetic properties of individual iron filled carbon nanotubes and their application as probes for magnetic force microscopy“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-72457.
Der volle Inhalt der QuelleRiboldi, Lucas Baiochi. „Variação da pressão de turgor de plantas de milho em condições de déficit hídrico“. Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/11/11144/tde-17032014-101852/.
Der volle Inhalt der QuelleMaize is a relatively tolerant plant water stress, especially in their early stages of growth. Plants subjected to water deficit have reduced growth by decreased photosynthetic rate and the availability of water in their tissues. The monitoring of water potential is important as an indicator of water stress, but the few methods for determining it .are not amenable to automation and for being destructive nature; the results are not always consistent with the actual conditions. With the new leaf patch clamp pressure probe developed by Zimmermann et al (2008) for the determination of leaf turgor, one can assess the water status of the plant and in some cases up to indicate the ideal time for irrigation. It is highly sensitive, versatile, non-destructive, easy to handle, with immediate results and available online. Thus the aim of this study was to determine if the maize plants subjected to drought cycles, had the ability to recover from water deficit, in addition to testing the effectiveness of this new method for monitoring stress. Plants were grown in pots in a greenhouse, where the leaf status was monitored through the leaf water potential, stomata conductance, leaf turgor pressure and photosynthesis. Plant growth (height, leaf area and dry mass) was continuously evaluated. Measures initiated one and half month after sowing and plants were monitored for about 30 days, by using the variable Pp (resulting pressure) given by de probe. Two treatments were imposed, one where the plant was kept irrigated and another where irrigation was suspended were established. As the days passed, the plants showed the first visual signs of stress, such as curling leaves. During this period we observed a fluctuation in the values of Pp throughout the day signaling loss of turgor, but with a recovery at night. There were significant differences between treatments for stomata conductance, water potential, photosynthesis and Pp over the days. After each irrigation, noticed a rapid recovery in all parameters analyzed. Thus, we concluded that maize plants were able to recover quickly from the water deficit, with a full recovery in just one day for all cycles analyzed. The turgor probe was able to display and monitor the water status of the plant, but in the last ten days of deficit it was not signaling an evident turgor loss as demonstrated by other indicators, as leaf curling, low leaf water potential, CO2 assimilation and stomata conductance. So, more studies are required to explain the probe response under these circumstances.
Diallo, Mamadou Lamine. „Apport de la sonde atomique tomographique dans l'étude structurale et magnétique du semi-conducteur magnétique 6H-SiC implanté avec du fer : vers un semi-conducteur magnétique à température ambiante“. Thesis, Normandie, 2017. http://www.theses.fr/2017NORMR051/document.
Der volle Inhalt der QuelleGreat hopes are placed on diluted magnetic semiconductors (DMS) for new components of spintronics. The challenge is to develop materials with both semiconducting and ferromagnetic properties. The aim of this work is to carry out a detailed nanostructural and magnetic study of the Fe: SiC candidate promising system to become a magnetic semiconductor diluted at room temperature. However, the magnetic properties observed in (6H-SiC) implanted with transition metals (TM) depend strongly on the material microstructure (content and nature of the dopant, precipitation of the dopant, etc.). In order to understand all the nanostructural and magnetic mechanisms, we studied the Fe: SiC system at the atomic scale using atom probe tomography (APT) and Mössbauer spectrometry. p and n single crystalline 6H-SiC near (0001)-oriented samples were submitted to multi-step implantations with 56Fe and 57Fe ions at different energies and fluences leading to an iron concentration (Cat =6 and 4%) at a depth between 20 nm and 120 nm from the sample surface. In this work, we were able to follow the effect of the nanostructure of the Fe: SiC system as a function of the iron concentration and the temperatures of implantations and annealing. We have established new results: nature and size of the nanoparticles, precise evaluation of the number of iron atoms diluted in the SiC matrix. The ferromagnetic and paramagnetic contributions are identified and clearly explained by the coupling of experimental techniques such as APT, Mössbauer spectrometry, SQUID (Superconducting Quantum Interference Device) magnetometry. We were able to put the material in optimal conditions for obtaining a DMS at room temperature. Indeed, the implanted samples (4% Fe) at 380°C more than 90% Fe atoms were distributed homogeneously. These Fe atoms are the main source of the ferromagnetic properties measured by SQUID and Mössbauer spectrometry at 300 K. These experimental results highlight the possibility of obtaining a new (DMS) at room temperature
Ramgolam, Anoop. „Conception, caractérisation et validation d'une sonde endoluminale bimodale couplant l'imagerie par résonance magnétique et la spectroscopie optique en vue du diagnostic du cancer colorectal“. Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10105.
Der volle Inhalt der QuelleThe main aim of this work is the development of a new diagnostic technique combining high spatial resolution MRI to autofluorescence and reflectance spectroscopy through the conception of a bimodal endoluminal probe. Such a technique falls within the framework of alternative innovative techniques to conventional colonoscopy that would allow better sensitivity to early stage digestive pathologies. Colorectal cancer is today a major health issue worldwide with more than 1.2 million cases diagnosed each year bearing the fact that the 5 year survival rate is 94% when precancerous lesions are diagnosed at an early stage (stage I) and only 8% when diagnosed at an advanced stage (stage IV). The promising imaging and spectral analysis techniques under investigation or undergoing clinical evaluation in different parts of the world are presented in the first chapter of this manuscript along with the basic physics involved in magnetic resonance imaging and optical spectroscopy. Chapter 2 gives a detailed description of the work carried out in devising and conceiving different endoluminal bimodal probe prototypes along with the dedicated optical test benches. Dedicated data processing and visualisation programmes developed are also presented within this chapter. The final chapter of this work deals with the different studies carried out in-vitro on different phantoms and in-vivo on a rabbit. Morphological information obtained through the MR images are also correlated to the biochemical information through the autofluorescence and reflectance spectra
Bílek, Petr. „Rozvoj a využití nedestruktivních zkušebních metod z hlediska soudního inženýrství“. Doctoral thesis, Vysoké učení technické v Brně. Ústav soudního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-408059.
Der volle Inhalt der QuelleManseur, Megdouda. „Contribution à l’étude d’un système de biotélémesure intracorporelle par gélule ingérable“. Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14430/document.
Der volle Inhalt der QuelleThis thesis is a contribution to study of intracorporeal measure of ingestible capsule. It concerns more specifically the problems of wireless transmission of energy and information between the capsule and ingestible extracorporeal control and monitoring system. Thus we first set of design methods and theoretical characterization of the experimental system of wireless remote power up capsules. A second part was dedicated to wireless transmission of energy and information design through magnetic induction, it led to the creation of an original system of tuning by synchronous switched capacitor. The problem of miniature antennas characterization has been a third party in which we have proposed innovative solutions based on techniques for measuring parameters Sij in differential (or transmission). Finally, we presented in the last part the design and characterization of a magnetic field probe designed to validate the simulation results
Moulin, Julien. „Microscopie magnétique locale par intégration de nanocapteurs magnétorésistifs“. Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP025.
Der volle Inhalt der QuelleMagnetoresistive scanning probe microscopy is based on fabrication and use of micro-cantilevers integrating giant magnetoresistive (GMR) or tunnel magnetoresistive sensors (TMR). These probes enable simultaneous measurement of decorrelated topography and local magnetic signal of the sample. The sensor can be manufactured down to submicron characteristic size. GMR measurement is sensitive (detection limit around 1 nT), quantitative, broadband (DC-100 MHz), robust in time and does not require frequent remagnetization or recalibration of the probe. The main study topics of this PhD are focused on developping and integrating magnetoresistive nanosensors on silicon nitride micro-cantilevers. They enhance spatial resolution while improving the linearity of the magnetic response and reducing magnetic noise. Pinning strategies have been used to stabilize the noise so as to improve repeatability and detection limit by one order of magnitude Sensors down to a few hundreds of nanometers have been manufactured, using dedicated and state-of-the-art GMR stacks. We tested reliability and efficiency of the nano-GMR probes by integrating them on an atomic force microscope (AFM), thus paving the way for an innovative local magnetic imaging method based of magnetic susceptibility measurement
Tetienne, Jean-Philippe. „Un microscope de champ magnétique basé sur le défaut azote-lacune du diamant : réalisation et application à l'étude de couches ferromagnétiques ultraminces“. Thesis, Cachan, Ecole normale supérieure, 2014. http://www.theses.fr/2014DENS0037/document.
Der volle Inhalt der QuelleThe ability to map the magnetic field at the nanometer scale would be a crucial advance to study the magnetic properties of solids as well as some transport phenomena, but also for fundamental studies in biology. This thesis deals with the realisation of a magnetic field microscope of a new kind, which promises a spatial resolution down to a few nanometres, a sensitivity of the order of a few nanoteslas, and operates under ambient conditions. This microscope is based on the nitrogen-vacancy defect in diamond, whose quantum properties can be harnessed to make an ultrasensitive, atomic-size magnetometre. In the first part, we will present the basic principles and the realisation of the nitrogen-vacancy defect microscope, which consists essentially in an atomic force microscope on the tip of which a diamond nanocrystal is grafted. We will test the microscope by imaging the stray field generated by a vortex core in a ferromagnetic microdisk. In the second part, we will apply the microscope to the study of ultrathin ferromagnets. These systems are interesting both from the physical point of view, as interface effects have been little explored so far, and for technology, as they are the cornerstone of several proposals for realising novel magnetic memory devices with low energy consumption. We will first study the nature of domain walls in these ultrathin ferromagnets, which will enable us to reveal the existence of an interface-related Dzyaloshinskii-Moriya interaction in some samples. Next, we will study the nanometric jumps of a domain wall induced by thermal fluctuations. In particular, we will demonstrate control over these jumps using a laser, which will allow us to visualise and explore the wall's energy landscape
Kunets, Vasyl. „Micro Hall devices based on high electron velocity semiconductors“. Doctoral thesis, [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973088672.
Der volle Inhalt der QuelleNgadjeu, Djomzoue Alain narcisse. „Etude des effets de gaine induites par une antenne de chauffage à la fréquence cyclotronique ionique (FCI, 30-80 MHz) et de leur impact sur les mesures par sondes dans les plasmas de fusion“. Thesis, Nancy 1, 2010. http://www.theses.fr/2010NAN10118/document.
Der volle Inhalt der QuelleThis work investigates the problematic of probe measurements in RF environment. DC currents flowing along magnetic field lines connected to powered ICRF antennas have been observed experimentally. Negative (i.e. net electron) current is collected on the powered ICRF antenna structure, while positive (i.e. net ion) current is collected by magnetically connected Langmuir probes. An asymmetric model based upon a double probe configuration was developed. The ICRF near field effect is mimicked by a ?driven? RF electrode at one extremity of an "active" open magnetic flux tube, where a purely sinusoidal potential is imposed. The other connection point is maintained at ground potential to model a collecting probe. This "active" flux tube can exchange transverse RF currents with surrounding "passive" tubes, whose extremities are grounded. With simple assumptions, an analytical solution is obtained. We can thus explain how DC currents are produced from RF sheaths. This model also makes it possible to model the characteristics DC Current' DC Voltage of a probe in the presence of RF and thus to evaluate some plasma properties. In this case the electrode at ground potential (probe) is polarized at a given potential. Analytical results are found within certain limits
Ben, Cheikh Harrek Zouhour. „Étude des ondes de spin dans des puits quantiques CdMnTe“. Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20071/document.
Der volle Inhalt der QuelleThis thesis focuses on the study of spin waves in n-doped CdMnTe quantum wells using respectively time-resolved Kerr rotation (TRKR) and four-wave mixing (FWM) techniques. We studied three high mobility samples with different characteristics.The TRKR technique gives access only to zero wave vector excitations, in our case the spin- flip wave q = 0 . We studied the anticrossing that appears between the spin -flip wave and the manganese spin -flip excitation. We studied the gap variation energy between these modes as function on the power excitation and the magnetic field. In particular, we have extended the measurements of mixed modes at lower Mn concentration (up 0.07 %) and contrary to what were expected; we found that the strong coupling regime persists at this concentration.We are then interested in determining the two dimensional electron gas spin polarization ζ, which can be deduced from the energy coupling between the mixed modes. We found that the measured polarization exceeds the theoretical polarization calculated taking into account the increased susceptibility by many-body effects. We also measured the electron spin relaxation time and we have shown that it is influenced by thermal effects inherent to optical pump-probe experiments on this time.In the second part of this thesis, we studied by FWM the damping and the dispersion of the non-zero wave vector spin waves for one of our samples. We have demonstrated that we can actually generate spin waves in femtosecond excitation and deted them by FWM. We found that the dispersion is lower than that observed in the Raman experiments. This low dispersion may be due to the strong excitation density used in the FWM experiments (typically three to four orders of magnitude higher than the Raman ones) and / or the fact that two waves of wave vector q and - q, having different dispersions are simultaneously probed in FWM
Diallo, Lindor. „Etude à l'échelle atomique de l'implantation du fer dans le carbure de silicium (SiC) : Elaboration d'un semiconducteur magnétique dilué à température ambiante“. Thesis, Normandie, 2019. http://www.theses.fr/2019NORMR053.
Der volle Inhalt der QuelleThis PhD thesis focuses on the study of SiC, doped with Fe in order to elaborate a diluted magnetic semiconductor at room temperature for spintronic applications. The iron doping was carried out by ion implantation of multi-energy type (30-160 keV) at different fluences, leading to a 2% constant atomic concentration between 20 to 100 nm, followed by a high temperature annealing in the goal of homogenizing the dopant concentration. The implantation temperature during this process is 550 °C, in order to avoid amorphization. The optimization of the magnetic and electronic properties of SiC-Fe, as well as the understanding of the physical mechanisms at the origin of induced magnetism, require a thorough characterization of the microstructure of the implanted materials. The objectives of this work are, on the one hand, to carry out an atomic scale study of the nanostructure according to the implantation conditions (temperature, fluence) and the post-implantation annealing and the other hand, to characterize the magnetic properties of implanted materials. In this work, we have shown by atom probe tomographic, the existence of nanoparticles whose the average size increases with the annealing temperature. The chemical mapping of the nanoparticles shows the presence of the Fe-rich phases for the annealed samples. Magnetic study (Mössbauer spectrometry and Squid) shows the ferromagnetic contribution is due to the magnetic nanoparticles and/or the diluted Fe atoms in the matrix. The correlation between structural and magnetic properties allowed showing that diluted Fe atoms and substitute to Si sites contribute to the ferromagnetic contribution below 300 K. In coupling many characterization techniques in order to give a detailed description of the different studied samples, we have shown that the size and nature of the phase present in the nanoparticles depend on the implantation conditions and the annealing temperatures and consequently it is necessary to anneal our samples at high temperature to reveal ferromagnetic order
Ponomareva, Svetlana. „Développement et caractérisation avancée de matériaux magnétiques durs de haute performance“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY035/document.
Der volle Inhalt der QuelleNowadays in medicine and biotechnology a wide range of applications involves magnetic micro/nano-object manipulation including remote control of magnetic beads, trapping of drug vectors, magnetic separation of labelled cells and so on. Handling and positioning magnetic particles and elements functionalized with these particles has greatly benefited from advances in microfabrication. Indeed reduction in size of the magnet while maintaining its field strength increases the field gradient. In this context, arrays made of permanent micromagnets are good candidates for magnetic handling devices. They are autonomous, suitable for integration into complex systems and their magnetic action is restricted to the region of interest.In this thesis we have elaborated an original approach based on AFM and MFM for quantitative study of the magnetic force and associated force gradients induced by TMP micromagnet array on an individual magnetic micro/nano-object. For this purpose, we have fabricated smart MFM probes where a single magnetic (sub)micronic sphere was fixed at the tip apex of a non-magnetic probe thanks to a dual beam FIB/SEM machine equipped with a micromanipulator.Scanning Force Microscopy conducted with such probes, the so-called Magnetic Particle Scanning Force Microscopy (MPSFM) was employed for 3D mapping of TMP micromagnets. This procedure involves two main aspects: (i) the quantification of magnetic interaction between micromagnet array and attached microsphere according to the distance between them and (ii) the complementary information about micromagnet array structure. The main advantage of MPSFM is the use of a probe with known magnetization and magnetic volume that in combination with modelling allows interpreting the results ably.We conducted MPSFM on TMP sample with two types of microparticle probes: with superparamagnetic and NdFeB microspheres. The measurements carried out with superparamagnetic microsphere probes reveal attractive forces (up to few tens of nN) while MFM maps obtained with NdFeB microsphere probes reveal attractive and repulsive forces (up to one hundred of nN) for which the nature of interaction is defined by superposition of microsphere and micromagnet array magnetizations. The derived force and its gradient from MFM measurements are in agreement with experiments on microparticle trapping confirming that the strongest magnetic interaction is observed above the TMP sample interfaces, between the areas with opposite magnetization. Thanks to 3D MFM maps, we demonstrated that intensity of magnetic signal decays fast with the distance and depends on micromagnet array and microsphere properties.Besides the magnetic interaction quantification, we obtained new information relevant to TMP sample structure: we observed and quantified the local magnetic roughness and associated fluctuations, in particular in zones of reversed magnetization. The variation of detected signal can reach the same order of magnitude as the signal above the micromagnet interfaces. These results complete the experiments on particle trapping explaining why magnetic microparticles are captured not only above the interfaces, but also inside the zones of reversed magnetization.Quantitative measurements of the force acting on a single (sub)microsphere associated to the modelling approach improve the understanding of processes involved in handling of magnetic objects in microfluidic devices. This could be employed to optimize the parameters of sorting devices and to define the quantity of magnetic nanoparticles required for labelling of biological cells according to their size. More generally these experimental and modelling approaches of magnetic interaction can meet a high interest in all sorts of applications where a well-known and controlled non-contact interaction is required at micro and nano-scale
Weichsel, Tim. „Entwicklung und Charakterisierung einer Elektron-Zyklotron-Resonanz-Ionenquelle mit integriertem Sputtermagnetron für die Erzeugung intensiver Ströme einfach geladener Aluminiumionen“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-206003.
Der volle Inhalt der QuelleAn electron cyclotron resonance ion source working at a microwave frequency of 2.45 GHz has been developed in order to generate an intense current of singly charged metal ions. It is loaded with metal vapor by an integrated cylindrical sputter magnetron, which was especially designed for this purpose. The MECRIS (Magnetron Electron Cyclotron Resonance Ion Source) merges ECR ion source technology with sputter magnetron technology in a unique manner representing a new metal ion source concept. By using an Al sputter target, the efficiency of the MECRIS was demonstrated successfully for the example of Al+ ion production. The extractable ion current was measured by a newly developed high-current Faraday cup. On the basis of numerical modeling, the total magnetic field was set in a way that the permanent magnets of the magnetron and the coils of the ECR source are forming a minimum-B-structure, providing an effective electron trap by the magnetic mirror principle. Simultaneously, optimal electron heating is achieved by a closed ECR-surface at resonant magnetic flux density of 87.5 mT. Electron temperature increases towards the center of the source to a maximum of about 11 eV and was measured by a double Langmuir probe. Due to the heated electron population, efficient electron impact ionization of the Al atoms is accomplished. Al atoms are injected with a rate of more than 1E18 Al-atoms/s resulting in a maximum Al atom density of 2E10 1/cm³. The MECRIS produces mainly singly charged ions of the sputtered material (Al+) and the process gas (Ar+). The Al+ ion extraction current is elevated by one order of magnitude to a maximum of 135 μA by increasing the process parameters sputter magnetron power, microwave power, coil current, and acceleration voltage. Related to the extraction area of about 0.5 cm², the highest possible Al+ ion current density is 270 μA/cm². A corresponding process parameter dependency was found for the plasma density showing a peak value of about 6E11 1/cm³, which was deduced from probe measurements. The ratio of the extracted Al+ ion current to the Ar+ ion current can be enhanced from 0.3 to a maximum of 2 by optimization of the process parameters. This was confirmed by probe investigations of the appropriate ion density ratio. In conclusion, the ECR-surface needs to be located in the area of the highest Al atom density in the target plane in order to improve the extraction current and Al+/Ar+ ratio. The MECRIS plasma produces an Al+ ion current, which is up to 140 % higher compared to that of the sole sputter magnetron plasma (without microwave injection). As revealed by probe measurements, this effect is due to the higher plasma density and electron temperature of the MECRIS plasma, leading to a difference of one order of magnitude and 7 eV, respectively. Additionally, the MECRIS plasma has been characterized by optical emission spectroscopy and simulated by a global and a two-dimensional model. Retrieved process parameter dependencies of plasma density, electron temperature, Al+ ion density, and Ar+ ion density coincide with probe findings. Although a discrepancy of the absolute values of partly up to two orders of magnitude is evident. Potentially, the Al+ ion current can be enhanced to the mA-region by optimizing the ion extraction system for minimal idle electrode currents and by rising sputter magnetron power as well as acceleration voltage above the actual limits of 10 kW and 30 kV, respectively
Barate, Philippe. „Génération et détection optique d'ondes de spin dans les puits quantiques CdMnTe dopés n“. Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2010. http://tel.archives-ouvertes.fr/tel-00587167.
Der volle Inhalt der QuelleSarrouj, Hiba. „DNP/solid state NMR probehead for the investigation of oriented membranes“. Phd thesis, Université de Strasbourg, 2014. http://tel.archives-ouvertes.fr/tel-01038015.
Der volle Inhalt der QuelleDimopoulos, Georges. „Etude, caractérisation et modélisation des micromagnétodiodes à grille en silicium sur saphir“. Grenoble INPG, 1989. http://www.theses.fr/1989INPG0015.
Der volle Inhalt der QuellePavlova, Anastasia. „Préparation et études des propriétés des films magnétiques nanostructures pour des applications en dispositifs magnéto-acoustiques et spintroniques“. Thesis, Ecole centrale de Lille, 2014. http://www.theses.fr/2014ECLI0010/document.
Der volle Inhalt der QuelleNowadays, structures based on ferromagnetic materials are largely used for different applications: random access magneto-resistive memories, magnetic sensors, and also new electronic components and spintronic devices. The general trend of modern electronic is the reduction of dimensions down to submicronic scales. Therefore, the magnetic nanostructures are of great interest and their methods of fabrication and properties largely studied.The main goal of this work is the preparation and experimental and theoretical research on properties of magnetic nanostructures for applications in magnetoresistive and photonic devices. The Scanning Probe Lithography (SPL) and Electron Beam Lithography (EBL) were used for the nanostructures fabrications. First steps were also achieved in fabrication of phononic cristals sensitive the magnetic field
Adenot, Sébastien. „Etude de capteurs magnétiques de position angulaire“. Phd thesis, Grenoble INPG, 1996. http://tel.archives-ouvertes.fr/tel-00531702.
Der volle Inhalt der QuelleOliveira, Joana. „Modeling the magnetic field of mercury“. Master's thesis, 2011. http://hdl.handle.net/10316/15860.
Der volle Inhalt der QuelleWolny, Franziska. „Magnetic properties of individual iron filled carbon nanotubes and their application as probes for magnetic force microscopy“. Doctoral thesis, 2010. https://tud.qucosa.de/id/qucosa%3A25672.
Der volle Inhalt der QuelleWeichsel, Tim. „Entwicklung und Charakterisierung einer Elektron-Zyklotron-Resonanz-Ionenquelle mit integriertem Sputtermagnetron für die Erzeugung intensiver Strömeeinfach geladener Aluminiumionen: Entwicklung und Charakterisierung einer Elektron-Zyklotron-Resonanz-Ionenquelle mit integriertem Sputtermagnetron für die Erzeugung intensiver Ströme einfach geladener Aluminiumionen“. Doctoral thesis, 2015. https://tud.qucosa.de/id/qucosa%3A29657.
Der volle Inhalt der QuelleAn electron cyclotron resonance ion source working at a microwave frequency of 2.45 GHz has been developed in order to generate an intense current of singly charged metal ions. It is loaded with metal vapor by an integrated cylindrical sputter magnetron, which was especially designed for this purpose. The MECRIS (Magnetron Electron Cyclotron Resonance Ion Source) merges ECR ion source technology with sputter magnetron technology in a unique manner representing a new metal ion source concept. By using an Al sputter target, the efficiency of the MECRIS was demonstrated successfully for the example of Al+ ion production. The extractable ion current was measured by a newly developed high-current Faraday cup. On the basis of numerical modeling, the total magnetic field was set in a way that the permanent magnets of the magnetron and the coils of the ECR source are forming a minimum-B-structure, providing an effective electron trap by the magnetic mirror principle. Simultaneously, optimal electron heating is achieved by a closed ECR-surface at resonant magnetic flux density of 87.5 mT. Electron temperature increases towards the center of the source to a maximum of about 11 eV and was measured by a double Langmuir probe. Due to the heated electron population, efficient electron impact ionization of the Al atoms is accomplished. Al atoms are injected with a rate of more than 1E18 Al-atoms/s resulting in a maximum Al atom density of 2E10 1/cm³. The MECRIS produces mainly singly charged ions of the sputtered material (Al+) and the process gas (Ar+). The Al+ ion extraction current is elevated by one order of magnitude to a maximum of 135 μA by increasing the process parameters sputter magnetron power, microwave power, coil current, and acceleration voltage. Related to the extraction area of about 0.5 cm², the highest possible Al+ ion current density is 270 μA/cm². A corresponding process parameter dependency was found for the plasma density showing a peak value of about 6E11 1/cm³, which was deduced from probe measurements. The ratio of the extracted Al+ ion current to the Ar+ ion current can be enhanced from 0.3 to a maximum of 2 by optimization of the process parameters. This was confirmed by probe investigations of the appropriate ion density ratio. In conclusion, the ECR-surface needs to be located in the area of the highest Al atom density in the target plane in order to improve the extraction current and Al+/Ar+ ratio. The MECRIS plasma produces an Al+ ion current, which is up to 140 % higher compared to that of the sole sputter magnetron plasma (without microwave injection). As revealed by probe measurements, this effect is due to the higher plasma density and electron temperature of the MECRIS plasma, leading to a difference of one order of magnitude and 7 eV, respectively. Additionally, the MECRIS plasma has been characterized by optical emission spectroscopy and simulated by a global and a two-dimensional model. Retrieved process parameter dependencies of plasma density, electron temperature, Al+ ion density, and Ar+ ion density coincide with probe findings. Although a discrepancy of the absolute values of partly up to two orders of magnitude is evident. Potentially, the Al+ ion current can be enhanced to the mA-region by optimizing the ion extraction system for minimal idle electrode currents and by rising sputter magnetron power as well as acceleration voltage above the actual limits of 10 kW and 30 kV, respectively.