Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Magnetická levitace“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Magnetická levitace" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Magnetická levitace"
Saroja, Gancang. „Magnetic Levitation for Diamagnetic Material Density Measurement: Theoretical Studies“. Natural-B 3, Nr. 3 (01.04.2014): 277–80. http://dx.doi.org/10.21776/ub.natural-b.2014.002.03.12.
Der volle Inhalt der QuelleDijkstra, Camelia E., Oliver J. Larkin, Paul Anthony, Michael R. Davey, Laurence Eaves, Catherine E. D. Rees und Richard J. A. Hill. „Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability“. Journal of The Royal Society Interface 8, Nr. 56 (29.07.2010): 334–44. http://dx.doi.org/10.1098/rsif.2010.0294.
Der volle Inhalt der QuelleMishra, Rajat, Himashu Sharma und Harshit Mishra. „High-speed vacuum air vehicle“. Transportation Systems and Technology 4, Nr. 3 suppl. 1 (19.11.2018): 328–39. http://dx.doi.org/10.17816/transsyst201843s1328-339.
Der volle Inhalt der QuelleSaroja, Gancang, Suyatman Suyatman und Nugraha Nugraha. „Magnetic Levitation for Separation of Plastic Polyethylene Terephthalate (PET) and Polyvinyl Chloride (PVC)“. Natural B 1, Nr. 4 (01.10.2012): 337–42. http://dx.doi.org/10.21776/ub.natural-b.2012.001.04.6.
Der volle Inhalt der QuelleSutoko, Sutoko. „SISTEM KENDALI LEVITASI MAGNETIK REPULSIF MENGGUNAKAN METODE PROPORTIONAL-INTEGRAL-DERIVATIVE (PID)“. Jurnal Teknologi Terapan: G-Tech 4, Nr. 2 (30.04.2021): 334–39. http://dx.doi.org/10.33379/gtech.v4i2.634.
Der volle Inhalt der QuelleMiyatake, Yoshihito, Mochimitsu Komori, Ken-ichi Asami und Nobuo Sakai. „Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System“. Advances in Condensed Matter Physics 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/561657.
Der volle Inhalt der QuelleNakashima, Hidetaka, Tatsuya Nakasaki, Tatsuhiro Tanaka, Yushi Kinoshita, Yuki Tanaka, Panart Khajornrungruang, Edmund Soji Otabe und Keisuke Suzuki. „Study on Polishing Method Using Magnetic Levitation Tool in Superconductive-Assisted Machining“. International Journal of Automation Technology 15, Nr. 2 (05.03.2021): 234–42. http://dx.doi.org/10.20965/ijat.2021.p0234.
Der volle Inhalt der QuelleOsa, Masahiro, Toru Masuzawa, Ryoga Orihara und Eisuke Tatsumi. „Performance Enhancement of a Magnetic System in a Ultra Compact 5-DOF-Controlled Self-Bearing Motor for a Rotary Pediatric Ventricular-Assist Device to Diminish Energy Input“. Actuators 8, Nr. 2 (15.04.2019): 31. http://dx.doi.org/10.3390/act8020031.
Der volle Inhalt der QuelleKecik, Krzysztof, und Andrzej Mitura. „Theoretical and Experimental Investigations of a Pseudo-Magnetic Levitation System for Energy Harvesting“. Sensors 20, Nr. 6 (14.03.2020): 1623. http://dx.doi.org/10.3390/s20061623.
Der volle Inhalt der QuelleEtxaniz, Iñigo, Alberto Izpizua, Manex San Martin und Joseba Arana. „Magnetic Levitated 2D Fast Drive“. IEEJ Transactions on Industry Applications 126, Nr. 12 (2006): 1678–81. http://dx.doi.org/10.1541/ieejias.126.1678.
Der volle Inhalt der QuelleDissertationen zum Thema "Magnetická levitace"
Šindelář, Petr. „Návrh hybridního magnetického ložiska“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-443089.
Der volle Inhalt der QuelleJančuš, Rastislav. „Magneticky levitující vozítko“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220903.
Der volle Inhalt der QuelleCoppock, Joyce Elizabeth. „Optical and Magnetic Measurements of a Levitated, Gyroscopically Stabilized Graphene Nanoplatelet“. Thesis, University of Maryland, College Park, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10641221.
Der volle Inhalt der QuelleI discuss the design and operation of a system for levitating a charged, μm-scale, multilayer graphene nanoplatelet in a quadrupole electric field trap in high vacuum. Levitation decouples the platelet from its environment and enables sensitive mechanical and magnetic measurements.
First, I describe a method of generating and trapping the nanoplatelets. The platelets are generated via liquid exfoliation of graphite pellets and charged via electrospray ionization. Individual platelets are trapped at a pressure of several hundred mTorr and transferred to a trap in a second chamber, which is pumped to UHV pressures for further study. All measurements of the trapped platelet's motion are performed via optical scattering.
Second, I present a method of gyroscopically stabilizing the levitated platelet. The rotation frequency of the platelet is locked to an applied radio frequency (rf) electric field Erf. Over time, frequency-locking stabilizes the platelet so that its axis of rotation is normal to the platelet and perpendicular to E rf.
Finally, I present optical data on the interaction of a multilayer graphene platelet with an applied magnetic field. The stabilized nanoplatelet is extremely sensitive to external torques, and its low-frequency dynamics are determined by an applied magnetic field. Two mechanisms of interaction are observed: a diamagnetic polarizability and a magnetic moment proportional to the frequency of rotation. A model is constructed to describe this data, and experimental values are compared to theory.
Craig, David. „Modeling and Control of a Magnetically Levitated Microrobotic System“. Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2844.
Der volle Inhalt der QuellePavluš, Ondřej. „Návrh elektrodynamického magnetického ložiska“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442790.
Der volle Inhalt der QuelleVerma, Shobhit. „Development of novel high-performance six-axis magnetically levitated instruments for nanoscale applications“. Diss., Texas A&M University, 2005. http://hdl.handle.net/1969.1/2602.
Der volle Inhalt der QuelleBlumber, Eric Joseph. „Testing of a Magnetically Levitated Rocket Thrust Measurement System Demonstrator for NASA“. Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/33753.
Der volle Inhalt der QuelleMaster of Science
Huo, Yunlong. „Finite element modeling of internal flow and stability of droplets levitated in electric and magnetic fields“. Online access for everyone, 2005. http://www.dissertations.wsu.edu/Dissertations/Summer2005/y%5Fhuo%5F083005.pdf.
Der volle Inhalt der QuelleKascak, Peter Eugene. „Fully Levitated Rotor Magnetically Suspended by Two Pole-Pair Separated Conical Motors“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1278530250.
Der volle Inhalt der QuelleBergmann, Ryan M. „Characterization of low-frequency electric potential oscillations near the edge of a plasma confined by a levitated magnetic dipole“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/53240.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 95-96).
A vertically adjustable electrostatic probe array was made to observe the previously seen low-frequency angular oscillations in LDX and identify if they are related to computationally expected convective cells. The array rests one meter from the centerline and measures edge fluctuations at field lines near the separatrix. It spans ninety degrees and has 24 probes mounted on it for total probe tip separation of 6.8cm. Bispectral analysis of the fluctuations show that that an inverse cascade of energy is present at times in LDX. The cascade transfers energy from small spatial scale structures to large scale structures. The wavenumber spectrum is xc k-1.4 to cx k-25 at high wavenumbers, which encompasses the inverse energy cascade regime of c k-5/3. The plasma also has a linear dispersion relation which gives a phase velocity of 2-16 k. This phase velocity is inversely correlated with neutral gas pressure in the vessel. The velocity also has a local maximum at 5 pTorr which is the pressure that produces maximum plasma density. The radial E x B drift velocities are observed to have a mean near zero, which indicates a closed structure like a convective cell. The instantaneous radial drift velocities are on the order of the ion sound speed, which is 35 km/s.
by Ryan M. Bergmann.
S.M.and S.B.
Bücher zum Thema "Magnetická levitace"
International, Conference on Magnetically Levitated Systems (Maglev) (10th 1988 Hamburg Germany). Tenth International Conference on Magnetically Levitated Systems (Maglev), June 9-10, 1988, Congress Centrum Hamburg, Federal Republic of Germany. Berlin: VDE-Verlag, 1988.
Den vollen Inhalt der Quelle findenInternational, Conference on Magnetically Levitated Systems (Maglev) (14th 1995 Bremen Germany). MAGLEV '95: 14th International Conference on Magnetically Levitated Systems : November 26-29, 1995, Hotel Maritim Bremen, Germany. Berlin: VDE-Verlag, 1995.
Den vollen Inhalt der Quelle findenUnited States. Congress. Office of Technology Assessment., Hrsg. New ways: Tiltrotor aircraft and magnetically levitated vehicles. Washington, DC: Congress of the U.S., Office of Technology Assessment, 1991.
Den vollen Inhalt der Quelle findenRamchandran, Ashok. A method for controlling and stabilizing the pitch-axis dynamics of a magnetically levitated train. 1990.
Den vollen Inhalt der Quelle findenUnited States. Maglev Technology Advisory Committee. und United States. Congress. Senate. Committee on Environment and Public Works., Hrsg. Benefits of magnetically levitated high-speed transportation for the United States: Report. Washington: U.S. G.P.O., 1989.
Den vollen Inhalt der Quelle findenMAGLEV '95: 14th International Conference on Magnetically Levitated Systems : November 26-29, 1995, Hotel Maritim Bremen, Germany. VDE-Verlag, 1995.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Magnetická levitace"
Murai, Yukio, Katsuhide Watanabe und Youichi Kanemitsu. „Seismic Test on Turbo-Molecular Pumps Levitated by Active Magnetic Bearing“. In Magnetic Bearings, 303–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-51724-2_28.
Der volle Inhalt der QuelleSuzuki, T., H. Suzuki, M. Endo, Y. Yasaka, H. Morimoto, H. Takaichi und M. Murakami. „Fundamental Characteristics of Prototype Ring-Shaped Flywheel Generator with Superconducting Levitated Magnetic Bearing“. In Advances in Superconductivity VI, 1237–42. Tokyo: Springer Japan, 1994. http://dx.doi.org/10.1007/978-4-431-68266-0_280.
Der volle Inhalt der QuelleSatow, T., M. Tanaka und T. Ogama. „AC Losses in Multifilamentary Superconducting Composites for Levitated Trains Under AC and DC Magnetic Fields“. In Advances in Cryogenic Engineering, 154–61. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4613-9847-9_17.
Der volle Inhalt der QuelleShimohata, Kenji, Toshie Takeuchi, Shoichi Yokoyama, Hideto Yoshimura, Shirou Nakamura, Tadatoshi Yamada und Shin Utsunomiya. „A Conceptual Design of a Superconducting Magnet for a Magnetic Levitated Train Using a High Tc Oxide Superconducting Wire“. In Advances in Superconductivity IV, 1081–84. Tokyo: Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-68195-3_236.
Der volle Inhalt der QuelleOkutani, Takeshi, Tsuyoshi Hamada, Yuko Inatomi und Hideaki Nagai. „Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields“. In Solidification of Containerless Undercooled Melts, 425–49. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527647903.ch20.
Der volle Inhalt der QuelleChong, Shin-Horng, Roong-Soon Allan Chan und Norhaslinda Hasim. „Enhanced Nonlinear PID Controller for Positioning Control of Maglev System“. In Control Based on PID Framework - The Mutual Promotion of Control and Identification for Complex Systems. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96769.
Der volle Inhalt der QuelleTiwari, R., F. Dohnal und R. Markert. „An extended field balancing procedure for flexible rotors fully levitated by active magnetic bearings“. In 10th International Conference on Vibrations in Rotating Machinery, 335–45. Elsevier, 2012. http://dx.doi.org/10.1533/9780857094537.5.335.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Magnetická levitace"
Yu, Ho, und Won-Jong Kim. „Controller Design and Implementation for a 6-DOF Magnetically Levitated Positioner With High-Precision“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82556.
Der volle Inhalt der QuelleXu, Zhixiang, Zhengjin Feng, Kunisato Seto und Hideyuki Tamura. „Nonlinear Vibration Properties of a Current-Controlled Attractive Type Maglev System“. In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41879.
Der volle Inhalt der QuelleNojoumian, M. A., M. Khodabakhsh und G. R. Vossoughi. „Modeling and Position Control of a Magnetic Levitation System Calculating Eddy Current Based Damping Force“. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39840.
Der volle Inhalt der QuelleSinha, R., und M. L. Nagurka. „Analog and LabView-Based Control of a Maglev System With NI-ELVIS“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81600.
Der volle Inhalt der QuelleTachino, K., K. Amei, T. Maeda und M. Sakui. „Characteristics of two-phase levitated linear induction motor“. In IEEE International Magnetics Conference. IEEE, 1999. http://dx.doi.org/10.1109/intmag.1999.837488.
Der volle Inhalt der QuelleKhodabakhsh, Mohammad, Mehran Ebrahimian und Bogdan Epureanu. „Modeling Eddy-Current Damping Force in Magnetic Levitation Systems With Conductors“. In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5164.
Der volle Inhalt der QuelleHawkins, Larry, Alexei Filatov, Rasish Khatri, Chris DellaCorte und S. Adam Howard. „Design of a Compact Magnetically Levitated Blower for Space Applications“. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15090.
Der volle Inhalt der QuelleOkada, Yohji, Shigenobu Miyamoto, Satoshi Ueno, Tetsuo Ohishi und C. C. Tan. „Levitation and Torque Control of PM Synchronous and Induction Type Bearingless Motor“. In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4032.
Der volle Inhalt der QuelleOhashi, S., H. Ohsaki und E. Masada. „Effect of the active damper coil system on the lateral displacement of the magnetically levitated bogie“. In IEEE International Magnetics Conference. IEEE, 1999. http://dx.doi.org/10.1109/intmag.1999.837479.
Der volle Inhalt der QuelleRogers, John, und Robert Rabb. „Control Theory in Practice: Magnetic Levitation“. In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24827.
Der volle Inhalt der Quelle