Zeitschriftenartikel zum Thema „Magnetic microrheology“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Magnetic microrheology" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Peredo-Ortíz, R., und M. Hernández-Contreras. „Diffusion microrheology of ferrofluids“. Revista Mexicana de Física 64, Nr. 1 (08.02.2018): 82. http://dx.doi.org/10.31349/revmexfis.64.82.
Der volle Inhalt der QuelleKim, Jin Chul, Myungeun Seo, Marc A. Hillmyer und Lorraine F. Francis. „Magnetic Microrheology of Block Copolymer Solutions“. ACS Applied Materials & Interfaces 5, Nr. 22 (14.11.2013): 11877–83. http://dx.doi.org/10.1021/am403569f.
Der volle Inhalt der QuelleWang, Hanqing, Tomaž Mohorič, Xianren Zhang, Jure Dobnikar und Jürgen Horbach. „Active microrheology in two-dimensional magnetic networks“. Soft Matter 15, Nr. 22 (2019): 4437–44. http://dx.doi.org/10.1039/c9sm00085b.
Der volle Inhalt der QuelleBrasovs, Artis, Jānis Cīmurs, Kaspars Ērglis, Andris Zeltins, Jean-Francois Berret und Andrejs Cēbers. „Magnetic microrods as a tool for microrheology“. Soft Matter 11, Nr. 13 (2015): 2563–69. http://dx.doi.org/10.1039/c4sm02454k.
Der volle Inhalt der QuelleRaikher, Yu L., und V. V. Rusakov. „Magnetic rotary microrheology in a Maxwell fluid“. Journal of Magnetism and Magnetic Materials 300, Nr. 1 (Mai 2006): e229-e233. http://dx.doi.org/10.1016/j.jmmm.2005.10.086.
Der volle Inhalt der QuelleBerezney, John P., und Megan T. Valentine. „A compact rotary magnetic tweezers device for dynamic material analysis“. Review of Scientific Instruments 93, Nr. 9 (01.09.2022): 093701. http://dx.doi.org/10.1063/5.0090199.
Der volle Inhalt der QuelleRadiom, Milad, Romain Hénault, Salma Mani, Aline Grein Iankovski, Xavier Norel und Jean-François Berret. „Magnetic wire active microrheology of human respiratory mucus“. Soft Matter 17, Nr. 32 (2021): 7585–95. http://dx.doi.org/10.1039/d1sm00512j.
Der volle Inhalt der QuelleLiu, Wei, Xiangjun Gong, To Ngai und Chi Wu. „Near-surface microrheology reveals dynamics and viscoelasticity of soft matter“. Soft Matter 14, Nr. 48 (2018): 9764–76. http://dx.doi.org/10.1039/c8sm01886c.
Der volle Inhalt der QuellePreece, Daryl, Rebecca Warren, R. M. L. Evans, Graham M. Gibson, Miles J. Padgett, Jonathan M. Cooper und Manlio Tassieri. „Optical tweezers: wideband microrheology“. Journal of Optics 13, Nr. 4 (04.03.2011): 044022. http://dx.doi.org/10.1088/2040-8978/13/4/044022.
Der volle Inhalt der QuelleBerret, Jean François. „Microrheology of viscoelastic solutions studied by magnetic rotational spectroscopy“. International Journal of Nanotechnology 13, Nr. 8/9 (2016): 597. http://dx.doi.org/10.1504/ijnt.2016.079661.
Der volle Inhalt der QuelleRebêlo, L. M., J. S. de Sousa, J. Mendes Filho, J. Schäpe, H. Doschke und M. Radmacher. „Microrheology of cells with magnetic force modulation atomic force microscopy“. Soft Matter 10, Nr. 13 (09.12.2013): 2141–49. http://dx.doi.org/10.1039/c3sm52045e.
Der volle Inhalt der QuelleLin, Jun, und Megan T. Valentine. „Ring-shaped NdFeB-based magnetic tweezers enables oscillatory microrheology measurements“. Applied Physics Letters 100, Nr. 20 (14.05.2012): 201902. http://dx.doi.org/10.1063/1.4717988.
Der volle Inhalt der QuelleBesseris, George J., und Donovan B. Yeates. „Rotating magnetic particle microrheometry in biopolymer fluid dynamics: Mucus microrheology“. Journal of Chemical Physics 127, Nr. 10 (14.09.2007): 105106. http://dx.doi.org/10.1063/1.2766947.
Der volle Inhalt der QuelleBehrend, Caleb J., Jeffrey N. Anker, Brandon H. McNaughton und Raoul Kopelman. „Microrheology with modulated optical nanoprobes (MOONs)“. Journal of Magnetism and Magnetic Materials 293, Nr. 1 (Mai 2005): 663–70. http://dx.doi.org/10.1016/j.jmmm.2005.02.072.
Der volle Inhalt der QuelleHelseth, L. E., und T. M. Fischer. „Fundamental limits of optical microrheology“. Journal of Colloid and Interface Science 275, Nr. 1 (Juli 2004): 322–27. http://dx.doi.org/10.1016/j.jcis.2004.01.052.
Der volle Inhalt der QuelleLin, Jun, und Megan T. Valentine. „High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments“. Review of Scientific Instruments 83, Nr. 5 (Mai 2012): 053905. http://dx.doi.org/10.1063/1.4719916.
Der volle Inhalt der QuelleKollmannsberger, Philip, Claudia Mierke und Ben Fabry. „Nonlinear mechanical response of adherent cells measured by magnetic bead microrheology“. Bone 46 (März 2010): S50—S51. http://dx.doi.org/10.1016/j.bone.2010.01.115.
Der volle Inhalt der QuelleRich, Jason P., Jan Lammerding, Gareth H. McKinley und Patrick S. Doyle. „Nonlinear microrheology of an aging, yield stress fluid using magnetic tweezers“. Soft Matter 7, Nr. 21 (2011): 9933. http://dx.doi.org/10.1039/c1sm05843f.
Der volle Inhalt der QuellePuig-De-Morales, Marina, Mireia Grabulosa, Jordi Alcaraz, Joaquim Mullol, Geoffrey N. Maksym, Jeffrey J. Fredberg und Daniel Navajas. „Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation“. Journal of Applied Physiology 91, Nr. 3 (01.09.2001): 1152–59. http://dx.doi.org/10.1152/jappl.2001.91.3.1152.
Der volle Inhalt der QuelleHuang, Derek E., und Roseanna N. Zia. „Sticky, active microrheology: Part 1. Linear-response“. Journal of Colloid and Interface Science 554 (Oktober 2019): 580–91. http://dx.doi.org/10.1016/j.jcis.2019.07.004.
Der volle Inhalt der QuelleSohn, I. S., R. Rajagopalan und A. C. Dogariu. „Spatially resolved microrheology through a liquid/liquid interface“. Journal of Colloid and Interface Science 269, Nr. 2 (Januar 2004): 503–13. http://dx.doi.org/10.1016/s0021-9797(03)00728-8.
Der volle Inhalt der QuelleWu, Chenjun, Qingxu Zhang, Yihu Song und Qiang Zheng. „Microrheology of magnetorheological silicone elastomers during curing process under the presence of magnetic field“. AIP Advances 7, Nr. 9 (September 2017): 095004. http://dx.doi.org/10.1063/1.5002121.
Der volle Inhalt der QuelleAprelev, Pavel, Bonni McKinney, Chadwick Walls und Konstanin G. Kornev. „Magnetic stage with environmental control for optical microscopy and high-speed nano- and microrheology“. Physics of Fluids 29, Nr. 7 (Juli 2017): 072001. http://dx.doi.org/10.1063/1.4989548.
Der volle Inhalt der QuelleRaikher, Yu L., und V. V. Rusakov. „Rotational Microrheology of Viscoelastic Fluid: Orientational Kinetics of Magnetic Particles in the Inertialess Approximation“. Colloid Journal 67, Nr. 5 (September 2005): 610–24. http://dx.doi.org/10.1007/s10595-005-0140-2.
Der volle Inhalt der QuelleGarcía Daza, Fabián A., Antonio M. Puertas, Alejandro Cuetos und Alessandro Patti. „Microrheology of colloidal suspensions via dynamic Monte Carlo simulations“. Journal of Colloid and Interface Science 605 (Januar 2022): 182–92. http://dx.doi.org/10.1016/j.jcis.2021.07.088.
Der volle Inhalt der QuelleMedronho, B., A. Filipe, C. Costa, A. Romano, B. Lindman, H. Edlund und M. Norgren. „Microrheology of novel cellulose stabilized oil-in-water emulsions“. Journal of Colloid and Interface Science 531 (Dezember 2018): 225–32. http://dx.doi.org/10.1016/j.jcis.2018.07.043.
Der volle Inhalt der QuelleGan, Tiansheng, Xiangjun Gong, Holger Schönherr und Guangzhao Zhang. „Microrheology of growing Escherichia coli biofilms investigated by using magnetic force modulation atomic force microscopy“. Biointerphases 11, Nr. 4 (Dezember 2016): 041005. http://dx.doi.org/10.1116/1.4968809.
Der volle Inhalt der QuelleInoue, Masao, und Akira Yoshimori. „Effects of interactions between particles on dynamics in microrheology“. Journal of Molecular Liquids 200 (Dezember 2014): 81–84. http://dx.doi.org/10.1016/j.molliq.2014.05.029.
Der volle Inhalt der QuelleMeng, Xianghe, Xiaomo Wu, Jianmin Song, Hao Zhang, Mingjun Chen und Hui Xie. „Quantification of the Microrheology of Living Cells Using Multi-Frequency Magnetic Force Modulation Atomic Force Microscopy“. IEEE Transactions on Instrumentation and Measurement 71 (2022): 1–9. http://dx.doi.org/10.1109/tim.2022.3153994.
Der volle Inhalt der QuelleMalgaretti, Paolo, Antonio M. Puertas und Ignacio Pagonabarraga. „Active microrheology in corrugated channels: Comparison of thermal and colloidal baths“. Journal of Colloid and Interface Science 608 (Februar 2022): 2694–702. http://dx.doi.org/10.1016/j.jcis.2021.10.193.
Der volle Inhalt der QuelleLiu, Wei, Yuwei Zhu, Tong Zhang, Hui Zhu, Chuanxin He und To Ngai. „Microrheology of thermoresponsive poly(N-isopropylacrylamide) microgel dispersions near a substrate surface“. Journal of Colloid and Interface Science 597 (September 2021): 104–13. http://dx.doi.org/10.1016/j.jcis.2021.03.181.
Der volle Inhalt der QuelleMolaei, Mehdi, und John C. Crocker. „Interfacial microrheology and tensiometry in a miniature, 3-d printed Langmuir trough“. Journal of Colloid and Interface Science 560 (Februar 2020): 407–15. http://dx.doi.org/10.1016/j.jcis.2019.09.112.
Der volle Inhalt der QuelleBausch, Andreas R., Ulrike Hellerer, Markus Essler, Martin Aepfelbacher und Erich Sackmann. „Rapid Stiffening of Integrin Receptor-Actin Linkages in Endothelial Cells Stimulated with Thrombin: A Magnetic Bead Microrheology Study“. Biophysical Journal 80, Nr. 6 (Juni 2001): 2649–57. http://dx.doi.org/10.1016/s0006-3495(01)76234-0.
Der volle Inhalt der QuelleHuang, Shilin, Kornelia Gawlitza, Regine von Klitzing, Laurent Gilson, Johannes Nowak, Stefan Odenbach, Werner Steffen und Günter K. Auernhammer. „Microgels at the Water/Oil Interface: In Situ Observation of Structural Aging and Two-Dimensional Magnetic Bead Microrheology“. Langmuir 32, Nr. 3 (11.01.2016): 712–22. http://dx.doi.org/10.1021/acs.langmuir.5b01438.
Der volle Inhalt der QuelleAponte-Rivera, Christian, und Roseanna N. Zia. „The confined Generalized Stokes-Einstein relation and its consequence on intracellular two-point microrheology“. Journal of Colloid and Interface Science 609 (März 2022): 423–33. http://dx.doi.org/10.1016/j.jcis.2021.11.037.
Der volle Inhalt der QuelleChu, Henry C. W., und Roseanna N. Zia. „Toward a nonequilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting colloidal dispersions“. Journal of Colloid and Interface Science 539 (März 2019): 388–99. http://dx.doi.org/10.1016/j.jcis.2018.12.055.
Der volle Inhalt der QuelleHuang, Derek E., und Roseanna N. Zia. „Sticky-probe active microrheology: Part 2. The influence of attractions on non-Newtonian flow“. Journal of Colloid and Interface Science 562 (März 2020): 293–306. http://dx.doi.org/10.1016/j.jcis.2019.11.057.
Der volle Inhalt der QuelleChen, Yin-Quan, Chia-Yu Kuo, Ming-Tzo Wei, Kelly Wu, Pin-Tzu Su, Chien-Shiou Huang und Arthur Chiou. „Intracellular viscoelasticity of HeLa cells during cell division studied by video particle-tracking microrheology“. Journal of Biomedical Optics 19, Nr. 1 (17.07.2013): 011008. http://dx.doi.org/10.1117/1.jbo.19.1.011008.
Der volle Inhalt der QuelleHabibi, Ahlem, Christophe Blanc, Nadia Ben Mbarek und Taoufik Soltani. „Passive and active microrheology of a lyotropic chromonic nematic liquid crystal disodium cromoglycate“. Journal of Molecular Liquids 288 (August 2019): 111027. http://dx.doi.org/10.1016/j.molliq.2019.111027.
Der volle Inhalt der QuelleMoschakis, Thomas, Brent S. Murray und Eric Dickinson. „On the kinetics of acid sodium caseinate gelation using particle tracking to probe the microrheology“. Journal of Colloid and Interface Science 345, Nr. 2 (Mai 2010): 278–85. http://dx.doi.org/10.1016/j.jcis.2010.02.005.
Der volle Inhalt der QuelleNeckernuss, T., L. K. Mertens, I. Martin, T. Paust, M. Beil und O. Marti. „Active microrheology with optical tweezers: a versatile tool to investigate anisotropies in intermediate filament networks“. Journal of Physics D: Applied Physics 49, Nr. 4 (29.12.2015): 045401. http://dx.doi.org/10.1088/0022-3727/49/4/045401.
Der volle Inhalt der QuelleAlves, Luis, Bruno Medronho, Alexandra Filipe, Filipe E. Antunes, Björn Lindman, Daniel Topgaard, Irina Davidovich und Yeshayahu Talmon. „New Insights on the Role of Urea on the Dissolution and Thermally-Induced Gelation of Cellulose in Aqueous Alkali“. Gels 4, Nr. 4 (11.12.2018): 87. http://dx.doi.org/10.3390/gels4040087.
Der volle Inhalt der QuelleJones, Dustin P., William Hanna, Gwendolyn M. Cramer und Jonathan P. Celli. „In situ measurement of ECM rheology and microheterogeneity in embedded and overlaid 3D pancreatic tumor stroma co-cultures via passive particle tracking“. Journal of Innovative Optical Health Sciences 10, Nr. 06 (November 2017): 1742003. http://dx.doi.org/10.1142/s1793545817420032.
Der volle Inhalt der QuelleWilhelm, C., J. Browaeys, A. Ponton und J. C. Bacri. „Rotational magnetic particles microrheology: The Maxwellian case“. Physical Review E 67, Nr. 1 (22.01.2003). http://dx.doi.org/10.1103/physreve.67.011504.
Der volle Inhalt der QuelleMao, Yating, Paige Nielsen und Jamel Ali. „Passive and Active Microrheology for Biomedical Systems“. Frontiers in Bioengineering and Biotechnology 10 (05.07.2022). http://dx.doi.org/10.3389/fbioe.2022.916354.
Der volle Inhalt der QuelleBerret, Jean-François. „Comment on “Bilayer aggregate microstructure determines viscoelasticity of lung surfactant suspensions” by C. O. Ciutara and J. A. Zasadzinski, Soft Matter, 2021, 17, 5170–5182“. Soft Matter, 2022. http://dx.doi.org/10.1039/d2sm00653g.
Der volle Inhalt der QuelleWilhelm, C., F. Gazeau und J. C. Bacri. „Rotational magnetic endosome microrheology: Viscoelastic architecture inside living cells“. Physical Review E 67, Nr. 6 (23.06.2003). http://dx.doi.org/10.1103/physreve.67.061908.
Der volle Inhalt der Quelle„Viscoelasticity of the bacteriophage Pf1 network measured by magnetic microrheology“. Magnetohydrodynamics 46, Nr. 1 (März 2010): 23–30. http://dx.doi.org/10.22364/mhd.46.1.2.
Der volle Inhalt der QuelleChevry, L., N. K. Sampathkumar, A. Cebers und J. F. Berret. „Magnetic wire-based sensors for the microrheology of complex fluids“. Physical Review E 88, Nr. 6 (13.12.2013). http://dx.doi.org/10.1103/physreve.88.062306.
Der volle Inhalt der QuelleWilhelm, Claire. „Effective temperature inside living cells“. MRS Proceedings 1227 (2009). http://dx.doi.org/10.1557/proc-1227-jj05-03.
Der volle Inhalt der Quelle