Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Magnetic microrheology.

Zeitschriftenartikel zum Thema „Magnetic microrheology“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Magnetic microrheology" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Peredo-Ortíz, R., und M. Hernández-Contreras. „Diffusion microrheology of ferrofluids“. Revista Mexicana de Física 64, Nr. 1 (08.02.2018): 82. http://dx.doi.org/10.31349/revmexfis.64.82.

Der volle Inhalt der Quelle
Annotation:
We provide a statistical mechanics approach to study the linear microrheology of thermally equilibrated and homogeneous ferrofluids. Theexpressions for the elastic and loss moduli depend on the bulk microstructure of the magnetic fluid determined by the structure factor of thesuspension of magnetic particles. The comparison of the predicted microrheology with computer simulations confirms that as a function ofrelaxation frequency of thermal fluctuations of the particle concentration both theory and simulations have the same trends. At very shortfrequencies the viscous modulus relates to the translational and rotational self-diffusion coefficients of a ferro-particle.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kim, Jin Chul, Myungeun Seo, Marc A. Hillmyer und Lorraine F. Francis. „Magnetic Microrheology of Block Copolymer Solutions“. ACS Applied Materials & Interfaces 5, Nr. 22 (14.11.2013): 11877–83. http://dx.doi.org/10.1021/am403569f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wang, Hanqing, Tomaž Mohorič, Xianren Zhang, Jure Dobnikar und Jürgen Horbach. „Active microrheology in two-dimensional magnetic networks“. Soft Matter 15, Nr. 22 (2019): 4437–44. http://dx.doi.org/10.1039/c9sm00085b.

Der volle Inhalt der Quelle
Annotation:
We study active microrheology in 2D with Langevin simulations of tracer particles pulled through magnetic networks by a constant force. While non-magnetic tracers strongly deform the network in order to be able to move through, the magnetic tracers can do so by deforming the structure only slightly.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Brasovs, Artis, Jānis Cīmurs, Kaspars Ērglis, Andris Zeltins, Jean-Francois Berret und Andrejs Cēbers. „Magnetic microrods as a tool for microrheology“. Soft Matter 11, Nr. 13 (2015): 2563–69. http://dx.doi.org/10.1039/c4sm02454k.

Der volle Inhalt der Quelle
Annotation:
The protocol of microrheological measurements consists of recording the dynamics of the orientation of the rod when the magnetic field is applied at an angle to the rod and observing its relaxation after the field is switched off.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Raikher, Yu L., und V. V. Rusakov. „Magnetic rotary microrheology in a Maxwell fluid“. Journal of Magnetism and Magnetic Materials 300, Nr. 1 (Mai 2006): e229-e233. http://dx.doi.org/10.1016/j.jmmm.2005.10.086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Berezney, John P., und Megan T. Valentine. „A compact rotary magnetic tweezers device for dynamic material analysis“. Review of Scientific Instruments 93, Nr. 9 (01.09.2022): 093701. http://dx.doi.org/10.1063/5.0090199.

Der volle Inhalt der Quelle
Annotation:
Here we present a new, compact magnetic tweezers design that enables precise application of a wide range of dynamic forces to soft materials without the need to raise or lower the magnet height above the sample. This is achieved through the controlled rotation of the permanent magnet array with respect to the fixed symmetry axis defined by a custom-built iron yoke. These design improvements increase the portability of the device and can be implemented within existing microscope setups without the need for extensive modification of the sample holders or light path. This device is particularly well-suited to active microrheology measurements using either creep analysis, in which a step force is applied to a micron-sized magnetic particle that is embedded in a complex fluid, or oscillatory microrheology, in which the particle is driven with a periodic waveform of controlled amplitude and frequency. In both cases, the motions of the particle are measured and analyzed to determine the local dynamic mechanical properties of the material.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Radiom, Milad, Romain Hénault, Salma Mani, Aline Grein Iankovski, Xavier Norel und Jean-François Berret. „Magnetic wire active microrheology of human respiratory mucus“. Soft Matter 17, Nr. 32 (2021): 7585–95. http://dx.doi.org/10.1039/d1sm00512j.

Der volle Inhalt der Quelle
Annotation:
Micrometer-sized magnetic wires are used to study the mechanical properties of human mucus collected after surgery. Our work shows that mucus has the property of a high viscosity gel characterized by large spatial viscoelastic heterogeneities.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Liu, Wei, Xiangjun Gong, To Ngai und Chi Wu. „Near-surface microrheology reveals dynamics and viscoelasticity of soft matter“. Soft Matter 14, Nr. 48 (2018): 9764–76. http://dx.doi.org/10.1039/c8sm01886c.

Der volle Inhalt der Quelle
Annotation:
We report the development of a microrheology technique that incorporates a magnetic-field-induced simulator on total internal reflection microscopy (TIRM) to probe the near-surface dynamics and viscoelastic behaviors of soft matter like polymer solution/gels and colloidal dispersions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Preece, Daryl, Rebecca Warren, R. M. L. Evans, Graham M. Gibson, Miles J. Padgett, Jonathan M. Cooper und Manlio Tassieri. „Optical tweezers: wideband microrheology“. Journal of Optics 13, Nr. 4 (04.03.2011): 044022. http://dx.doi.org/10.1088/2040-8978/13/4/044022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Berret, Jean François. „Microrheology of viscoelastic solutions studied by magnetic rotational spectroscopy“. International Journal of Nanotechnology 13, Nr. 8/9 (2016): 597. http://dx.doi.org/10.1504/ijnt.2016.079661.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Rebêlo, L. M., J. S. de Sousa, J. Mendes Filho, J. Schäpe, H. Doschke und M. Radmacher. „Microrheology of cells with magnetic force modulation atomic force microscopy“. Soft Matter 10, Nr. 13 (09.12.2013): 2141–49. http://dx.doi.org/10.1039/c3sm52045e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Lin, Jun, und Megan T. Valentine. „Ring-shaped NdFeB-based magnetic tweezers enables oscillatory microrheology measurements“. Applied Physics Letters 100, Nr. 20 (14.05.2012): 201902. http://dx.doi.org/10.1063/1.4717988.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Besseris, George J., und Donovan B. Yeates. „Rotating magnetic particle microrheometry in biopolymer fluid dynamics: Mucus microrheology“. Journal of Chemical Physics 127, Nr. 10 (14.09.2007): 105106. http://dx.doi.org/10.1063/1.2766947.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Behrend, Caleb J., Jeffrey N. Anker, Brandon H. McNaughton und Raoul Kopelman. „Microrheology with modulated optical nanoprobes (MOONs)“. Journal of Magnetism and Magnetic Materials 293, Nr. 1 (Mai 2005): 663–70. http://dx.doi.org/10.1016/j.jmmm.2005.02.072.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Helseth, L. E., und T. M. Fischer. „Fundamental limits of optical microrheology“. Journal of Colloid and Interface Science 275, Nr. 1 (Juli 2004): 322–27. http://dx.doi.org/10.1016/j.jcis.2004.01.052.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Lin, Jun, und Megan T. Valentine. „High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments“. Review of Scientific Instruments 83, Nr. 5 (Mai 2012): 053905. http://dx.doi.org/10.1063/1.4719916.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Kollmannsberger, Philip, Claudia Mierke und Ben Fabry. „Nonlinear mechanical response of adherent cells measured by magnetic bead microrheology“. Bone 46 (März 2010): S50—S51. http://dx.doi.org/10.1016/j.bone.2010.01.115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Rich, Jason P., Jan Lammerding, Gareth H. McKinley und Patrick S. Doyle. „Nonlinear microrheology of an aging, yield stress fluid using magnetic tweezers“. Soft Matter 7, Nr. 21 (2011): 9933. http://dx.doi.org/10.1039/c1sm05843f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Puig-De-Morales, Marina, Mireia Grabulosa, Jordi Alcaraz, Joaquim Mullol, Geoffrey N. Maksym, Jeffrey J. Fredberg und Daniel Navajas. „Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation“. Journal of Applied Physiology 91, Nr. 3 (01.09.2001): 1152–59. http://dx.doi.org/10.1152/jappl.2001.91.3.1152.

Der volle Inhalt der Quelle
Annotation:
Magnetic twisting cytometry (MTC) (Wang N, Butler JP, and Ingber DE, Science260: 1124–1127, 1993) is a useful technique for probing cell micromechanics. The technique is based on twisting ligand-coated magnetic microbeads bound to membrane receptors and measuring the resulting bead rotation with a magnetometer. Owing to the low signal-to-noise ratio, however, the magnetic signal must be modulated, which is accomplished by spinning the sample at ∼10 Hz. Present demodulation approaches limit the MTC range to frequencies <0.5 Hz. We propose a novel demodulation algorithm to expand the frequency range of MTC measurements to higher frequencies. The algorithm is based on coherent demodulation in the frequency domain, and its frequency range is limited only by the dynamic response of the magnetometer. Using the new algorithm, we measured the complex modulus of elasticity (G*) of cultured human bronchial epithelial cells (BEAS-2B) from 0.03 to 16 Hz. Cells were cultured in supplemented RPMI medium, and ferromagnetic beads (∼5 μm) coated with an RGD peptide were bound to the cell membrane. Both the storage (G′, real part of G*) and loss (G", imaginary part of G*) moduli increased with frequency as ωα (2π × frequency) with α ≈ ¼. The ratio G"/G′ was ∼0.5 and varied little with frequency. Thus the cells exhibited a predominantly elastic behavior with a weak power law of frequency and a nearly constant proportion of elastic vs. frictional stresses, implying that the mechanical behavior conformed to the so-called structural damping (or constant-phase) law (Maksym GN, Fabry B, Butler JP, Navajas D, Tschumperlin DJ, LaPorte JD, and Fredberg JJ, J Appl Physiol 89: 1619–1632, 2000). We conclude that frequency domain demodulation dramatically increases the frequency range that can be probed with MTC and reveals that the mechanics of these cells conforms to constant-phase behavior over a range of frequencies approaching three decades.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Huang, Derek E., und Roseanna N. Zia. „Sticky, active microrheology: Part 1. Linear-response“. Journal of Colloid and Interface Science 554 (Oktober 2019): 580–91. http://dx.doi.org/10.1016/j.jcis.2019.07.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Sohn, I. S., R. Rajagopalan und A. C. Dogariu. „Spatially resolved microrheology through a liquid/liquid interface“. Journal of Colloid and Interface Science 269, Nr. 2 (Januar 2004): 503–13. http://dx.doi.org/10.1016/s0021-9797(03)00728-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Wu, Chenjun, Qingxu Zhang, Yihu Song und Qiang Zheng. „Microrheology of magnetorheological silicone elastomers during curing process under the presence of magnetic field“. AIP Advances 7, Nr. 9 (September 2017): 095004. http://dx.doi.org/10.1063/1.5002121.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Aprelev, Pavel, Bonni McKinney, Chadwick Walls und Konstanin G. Kornev. „Magnetic stage with environmental control for optical microscopy and high-speed nano- and microrheology“. Physics of Fluids 29, Nr. 7 (Juli 2017): 072001. http://dx.doi.org/10.1063/1.4989548.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Raikher, Yu L., und V. V. Rusakov. „Rotational Microrheology of Viscoelastic Fluid: Orientational Kinetics of Magnetic Particles in the Inertialess Approximation“. Colloid Journal 67, Nr. 5 (September 2005): 610–24. http://dx.doi.org/10.1007/s10595-005-0140-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

García Daza, Fabián A., Antonio M. Puertas, Alejandro Cuetos und Alessandro Patti. „Microrheology of colloidal suspensions via dynamic Monte Carlo simulations“. Journal of Colloid and Interface Science 605 (Januar 2022): 182–92. http://dx.doi.org/10.1016/j.jcis.2021.07.088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Medronho, B., A. Filipe, C. Costa, A. Romano, B. Lindman, H. Edlund und M. Norgren. „Microrheology of novel cellulose stabilized oil-in-water emulsions“. Journal of Colloid and Interface Science 531 (Dezember 2018): 225–32. http://dx.doi.org/10.1016/j.jcis.2018.07.043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Gan, Tiansheng, Xiangjun Gong, Holger Schönherr und Guangzhao Zhang. „Microrheology of growing Escherichia coli biofilms investigated by using magnetic force modulation atomic force microscopy“. Biointerphases 11, Nr. 4 (Dezember 2016): 041005. http://dx.doi.org/10.1116/1.4968809.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Inoue, Masao, und Akira Yoshimori. „Effects of interactions between particles on dynamics in microrheology“. Journal of Molecular Liquids 200 (Dezember 2014): 81–84. http://dx.doi.org/10.1016/j.molliq.2014.05.029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Meng, Xianghe, Xiaomo Wu, Jianmin Song, Hao Zhang, Mingjun Chen und Hui Xie. „Quantification of the Microrheology of Living Cells Using Multi-Frequency Magnetic Force Modulation Atomic Force Microscopy“. IEEE Transactions on Instrumentation and Measurement 71 (2022): 1–9. http://dx.doi.org/10.1109/tim.2022.3153994.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Malgaretti, Paolo, Antonio M. Puertas und Ignacio Pagonabarraga. „Active microrheology in corrugated channels: Comparison of thermal and colloidal baths“. Journal of Colloid and Interface Science 608 (Februar 2022): 2694–702. http://dx.doi.org/10.1016/j.jcis.2021.10.193.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Liu, Wei, Yuwei Zhu, Tong Zhang, Hui Zhu, Chuanxin He und To Ngai. „Microrheology of thermoresponsive poly(N-isopropylacrylamide) microgel dispersions near a substrate surface“. Journal of Colloid and Interface Science 597 (September 2021): 104–13. http://dx.doi.org/10.1016/j.jcis.2021.03.181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Molaei, Mehdi, und John C. Crocker. „Interfacial microrheology and tensiometry in a miniature, 3-d printed Langmuir trough“. Journal of Colloid and Interface Science 560 (Februar 2020): 407–15. http://dx.doi.org/10.1016/j.jcis.2019.09.112.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Bausch, Andreas R., Ulrike Hellerer, Markus Essler, Martin Aepfelbacher und Erich Sackmann. „Rapid Stiffening of Integrin Receptor-Actin Linkages in Endothelial Cells Stimulated with Thrombin: A Magnetic Bead Microrheology Study“. Biophysical Journal 80, Nr. 6 (Juni 2001): 2649–57. http://dx.doi.org/10.1016/s0006-3495(01)76234-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Huang, Shilin, Kornelia Gawlitza, Regine von Klitzing, Laurent Gilson, Johannes Nowak, Stefan Odenbach, Werner Steffen und Günter K. Auernhammer. „Microgels at the Water/Oil Interface: In Situ Observation of Structural Aging and Two-Dimensional Magnetic Bead Microrheology“. Langmuir 32, Nr. 3 (11.01.2016): 712–22. http://dx.doi.org/10.1021/acs.langmuir.5b01438.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Aponte-Rivera, Christian, und Roseanna N. Zia. „The confined Generalized Stokes-Einstein relation and its consequence on intracellular two-point microrheology“. Journal of Colloid and Interface Science 609 (März 2022): 423–33. http://dx.doi.org/10.1016/j.jcis.2021.11.037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Chu, Henry C. W., und Roseanna N. Zia. „Toward a nonequilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting colloidal dispersions“. Journal of Colloid and Interface Science 539 (März 2019): 388–99. http://dx.doi.org/10.1016/j.jcis.2018.12.055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Huang, Derek E., und Roseanna N. Zia. „Sticky-probe active microrheology: Part 2. The influence of attractions on non-Newtonian flow“. Journal of Colloid and Interface Science 562 (März 2020): 293–306. http://dx.doi.org/10.1016/j.jcis.2019.11.057.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Chen, Yin-Quan, Chia-Yu Kuo, Ming-Tzo Wei, Kelly Wu, Pin-Tzu Su, Chien-Shiou Huang und Arthur Chiou. „Intracellular viscoelasticity of HeLa cells during cell division studied by video particle-tracking microrheology“. Journal of Biomedical Optics 19, Nr. 1 (17.07.2013): 011008. http://dx.doi.org/10.1117/1.jbo.19.1.011008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Habibi, Ahlem, Christophe Blanc, Nadia Ben Mbarek und Taoufik Soltani. „Passive and active microrheology of a lyotropic chromonic nematic liquid crystal disodium cromoglycate“. Journal of Molecular Liquids 288 (August 2019): 111027. http://dx.doi.org/10.1016/j.molliq.2019.111027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Moschakis, Thomas, Brent S. Murray und Eric Dickinson. „On the kinetics of acid sodium caseinate gelation using particle tracking to probe the microrheology“. Journal of Colloid and Interface Science 345, Nr. 2 (Mai 2010): 278–85. http://dx.doi.org/10.1016/j.jcis.2010.02.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Neckernuss, T., L. K. Mertens, I. Martin, T. Paust, M. Beil und O. Marti. „Active microrheology with optical tweezers: a versatile tool to investigate anisotropies in intermediate filament networks“. Journal of Physics D: Applied Physics 49, Nr. 4 (29.12.2015): 045401. http://dx.doi.org/10.1088/0022-3727/49/4/045401.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Alves, Luis, Bruno Medronho, Alexandra Filipe, Filipe E. Antunes, Björn Lindman, Daniel Topgaard, Irina Davidovich und Yeshayahu Talmon. „New Insights on the Role of Urea on the Dissolution and Thermally-Induced Gelation of Cellulose in Aqueous Alkali“. Gels 4, Nr. 4 (11.12.2018): 87. http://dx.doi.org/10.3390/gels4040087.

Der volle Inhalt der Quelle
Annotation:
The gelation of cellulose in alkali solutions is quite relevant, but still a poorly understood process. Moreover, the role of certain additives, such as urea, is not consensual among the community. Therefore, in this work, an unusual set of characterization methods for cellulose solutions, such as cryo-transmission electronic microscopy (cryo-TEM), polarization transfer solid-state nuclear magnetic resonance (PTssNMR) and diffusion wave spectroscopy (DWS) were employed to study the role of urea on the dissolution and gelation processes of cellulose in aqueous alkali. Cryo-TEM reveals that the addition of urea generally reduces the presence of undissolved cellulose fibrils in solution. These results are consistent with PTssNMR data, which show the reduction and in some cases the absence of crystalline portions of cellulose in solution, suggesting a pronounced positive effect of the urea on the dissolution efficiency of cellulose. Both conventional mechanical macrorheology and microrheology (DWS) indicate a significant delay of gelation induced by urea, being absent until ca. 60 °C for a system containing 5 wt % cellulose, while a system without urea gels at a lower temperature. For higher cellulose concentrations, the samples containing urea form gels even at room temperature. It is argued that since urea facilitates cellulose dissolution, the high entanglement of the cellulose chains in solution (above the critical concentration, C*) results in a strong three-dimensional network.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Jones, Dustin P., William Hanna, Gwendolyn M. Cramer und Jonathan P. Celli. „In situ measurement of ECM rheology and microheterogeneity in embedded and overlaid 3D pancreatic tumor stroma co-cultures via passive particle tracking“. Journal of Innovative Optical Health Sciences 10, Nr. 06 (November 2017): 1742003. http://dx.doi.org/10.1142/s1793545817420032.

Der volle Inhalt der Quelle
Annotation:
Tumor growth is regulated by a diverse set of extracellular influences, including paracrine crosstalk with stromal partners, and biophysical interactions with surrounding cells and tissues.Studies elucidating the role of physical force and the mechanical properties of the extracellular matrix (ECM) itself as regulators of tumor growth and invasion have been greatly catalyzed by the use of in vitro three-dimensional (3D) tumor models. These systems provide the ability to systematically isolate, manipulate, and evaluate impact of stromal components and extracellular mechanics in a platform that is both conducive to imaging and biologically relevant. However, recognizing that mechanoregulatory crosstalk is bi-directional and fully utilizing these models requires complementary methods for in situ measurements of the local mechanical environment. Here, in 3D tumor/fibroblast co-culture models of pancreatic cancer, a disease characterized by its prominent stromal involvement, we evaluate the use of particle-tracking microrheology to probe dynamic mechanical changes. Using videos of fluorescently labeled polystyrene microspheres embedded in collagen I ECM, we measure spatiotemporal changes in the Brownian motion of probes to report local ECM shear modulus and microheterogeneity. This approach reveals stiffening of collagen in fibroblast co-cultures relative to cultures with cancer cells only, which exhibit degraded ECM with heterogeneous microstructure. We further show that these effects are dependent on culture geometry with contrasting behavior for embedded and overlay cultures. In addition to potential application to screening stroma-targeted therapeutics, this work also provides insight into how the composition and plating geometry impact the mechanical properties of 3D cell cultures that are increasingly widely used in cancer biology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Wilhelm, C., J. Browaeys, A. Ponton und J. C. Bacri. „Rotational magnetic particles microrheology: The Maxwellian case“. Physical Review E 67, Nr. 1 (22.01.2003). http://dx.doi.org/10.1103/physreve.67.011504.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Mao, Yating, Paige Nielsen und Jamel Ali. „Passive and Active Microrheology for Biomedical Systems“. Frontiers in Bioengineering and Biotechnology 10 (05.07.2022). http://dx.doi.org/10.3389/fbioe.2022.916354.

Der volle Inhalt der Quelle
Annotation:
Microrheology encompasses a range of methods to measure the mechanical properties of soft materials. By characterizing the motion of embedded microscopic particles, microrheology extends the probing length scale and frequency range of conventional bulk rheology. Microrheology can be characterized into either passive or active methods based on the driving force exerted on probe particles. Tracer particles are driven by thermal energy in passive methods, applying minimal deformation to the assessed medium. In active techniques, particles are manipulated by an external force, most commonly produced through optical and magnetic fields. Small-scale rheology holds significant advantages over conventional bulk rheology, such as eliminating the need for large sample sizes, the ability to probe fragile materials non-destructively, and a wider probing frequency range. More importantly, some microrheological techniques can obtain spatiotemporal information of local microenvironments and accurately describe the heterogeneity of structurally complex fluids. Recently, there has been significant growth in using these minimally invasive techniques to investigate a wide range of biomedical systems both in vitro and in vivo. Here, we review the latest applications and advancements of microrheology in mammalian cells, tissues, and biofluids and discuss the current challenges and potential future advances on the horizon.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Berret, Jean-François. „Comment on “Bilayer aggregate microstructure determines viscoelasticity of lung surfactant suspensions” by C. O. Ciutara and J. A. Zasadzinski, Soft Matter, 2021, 17, 5170–5182“. Soft Matter, 2022. http://dx.doi.org/10.1039/d2sm00653g.

Der volle Inhalt der Quelle
Annotation:
This note discusses the possible causes of the discrepancy between two studies and suggests that for pulmonary surfactant substitutes, the microrheology technique known as rotational magnetic spectroscopy can provide valuable results.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Wilhelm, C., F. Gazeau und J. C. Bacri. „Rotational magnetic endosome microrheology: Viscoelastic architecture inside living cells“. Physical Review E 67, Nr. 6 (23.06.2003). http://dx.doi.org/10.1103/physreve.67.061908.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

„Viscoelasticity of the bacteriophage Pf1 network measured by magnetic microrheology“. Magnetohydrodynamics 46, Nr. 1 (März 2010): 23–30. http://dx.doi.org/10.22364/mhd.46.1.2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Chevry, L., N. K. Sampathkumar, A. Cebers und J. F. Berret. „Magnetic wire-based sensors for the microrheology of complex fluids“. Physical Review E 88, Nr. 6 (13.12.2013). http://dx.doi.org/10.1103/physreve.88.062306.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Wilhelm, Claire. „Effective temperature inside living cells“. MRS Proceedings 1227 (2009). http://dx.doi.org/10.1557/proc-1227-jj05-03.

Der volle Inhalt der Quelle
Annotation:
AbstractThe combination of active and passive microrheology using magnetic probes engulfed inside living cells demonstrates the violation of the fluctuation dissipation theorem in cells. It is proposed to quantify the deviation from the in equilibrium situation with an effective temperature. Each magnetic probe then serves as a local thermometer within the cells. The response of pairs of magnetic beads of two diameters (1 and 2.8 μm) to an oscillating magnetic field is analyzed to measure the viscoelastic complex modulus in the beads environment (active measurement). The spontaneous motion of the beads is tracked to compute their mean square displacements (passive measurement). The effective temperature is derived using an extension of the fluctuation dissipation theorem.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie