Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Magnetic microrheology“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Magnetic microrheology" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Magnetic microrheology"
Peredo-Ortíz, R., und M. Hernández-Contreras. „Diffusion microrheology of ferrofluids“. Revista Mexicana de Física 64, Nr. 1 (08.02.2018): 82. http://dx.doi.org/10.31349/revmexfis.64.82.
Der volle Inhalt der QuelleKim, Jin Chul, Myungeun Seo, Marc A. Hillmyer und Lorraine F. Francis. „Magnetic Microrheology of Block Copolymer Solutions“. ACS Applied Materials & Interfaces 5, Nr. 22 (14.11.2013): 11877–83. http://dx.doi.org/10.1021/am403569f.
Der volle Inhalt der QuelleWang, Hanqing, Tomaž Mohorič, Xianren Zhang, Jure Dobnikar und Jürgen Horbach. „Active microrheology in two-dimensional magnetic networks“. Soft Matter 15, Nr. 22 (2019): 4437–44. http://dx.doi.org/10.1039/c9sm00085b.
Der volle Inhalt der QuelleBrasovs, Artis, Jānis Cīmurs, Kaspars Ērglis, Andris Zeltins, Jean-Francois Berret und Andrejs Cēbers. „Magnetic microrods as a tool for microrheology“. Soft Matter 11, Nr. 13 (2015): 2563–69. http://dx.doi.org/10.1039/c4sm02454k.
Der volle Inhalt der QuelleRaikher, Yu L., und V. V. Rusakov. „Magnetic rotary microrheology in a Maxwell fluid“. Journal of Magnetism and Magnetic Materials 300, Nr. 1 (Mai 2006): e229-e233. http://dx.doi.org/10.1016/j.jmmm.2005.10.086.
Der volle Inhalt der QuelleBerezney, John P., und Megan T. Valentine. „A compact rotary magnetic tweezers device for dynamic material analysis“. Review of Scientific Instruments 93, Nr. 9 (01.09.2022): 093701. http://dx.doi.org/10.1063/5.0090199.
Der volle Inhalt der QuelleRadiom, Milad, Romain Hénault, Salma Mani, Aline Grein Iankovski, Xavier Norel und Jean-François Berret. „Magnetic wire active microrheology of human respiratory mucus“. Soft Matter 17, Nr. 32 (2021): 7585–95. http://dx.doi.org/10.1039/d1sm00512j.
Der volle Inhalt der QuelleLiu, Wei, Xiangjun Gong, To Ngai und Chi Wu. „Near-surface microrheology reveals dynamics and viscoelasticity of soft matter“. Soft Matter 14, Nr. 48 (2018): 9764–76. http://dx.doi.org/10.1039/c8sm01886c.
Der volle Inhalt der QuellePreece, Daryl, Rebecca Warren, R. M. L. Evans, Graham M. Gibson, Miles J. Padgett, Jonathan M. Cooper und Manlio Tassieri. „Optical tweezers: wideband microrheology“. Journal of Optics 13, Nr. 4 (04.03.2011): 044022. http://dx.doi.org/10.1088/2040-8978/13/4/044022.
Der volle Inhalt der QuelleBerret, Jean François. „Microrheology of viscoelastic solutions studied by magnetic rotational spectroscopy“. International Journal of Nanotechnology 13, Nr. 8/9 (2016): 597. http://dx.doi.org/10.1504/ijnt.2016.079661.
Der volle Inhalt der QuelleDissertationen zum Thema "Magnetic microrheology"
Fins, Carreira Aderito. „Matière active versus gravité : équation d’état et capillarité effectives de suspensions de particules autopropulsées“. Electronic Thesis or Diss., Lyon 1, 2023. http://www.theses.fr/2023LYO10130.
Der volle Inhalt der QuelleActive matter is a rapidly expanding field in recent years. It consists of entities able to use an energy source to produce local work such as self-propulsion. Such matter, by being out of equilibrium, has fascinating properties such as self-organization as seen in a flock of birds. However, active matter is not limited to biological systems. Active abiotic systems have also been developed. Indeed, during this thesis, we study a system made of self-propelled microparticles. Our objectives are to understand how they organize in the presence of gravity and in contact with a wall. Our system is made of Janus Au/Pt colloids that can self-propel in the presence of hydrogen peroxide by phoretic mechanisms. The colloids being denser than water, they form a monolayer on the bottom of their container. Provided a small tilting angle, we can observed 2D sedimentation. For colloidal systems at equilibrium, the sedimentation profile contains the equation of state of the system. For active systems, an equation of state does not exist in the general case, but analogous thermodynamic quantities can be defined. I measured the sedimentation profile of my active system and compared it to models developed for active Brownian particles in a "dry" environment (ABPs). I showed that the role of the background fluid cannot be neglected. In a second part, we studied the wetting properties of our system. Active mater is known to have effective wetting properties, yet no experimental study with a system analogous to ours has focused on the wetting phenomenon of a wall vertically immersed in a sediment. We show that an adhesion layer is formed with the density rising at the wall. To better understand the observed phenomena, we have confronted them with a numerical model of ABPs for which we can vary the interactions between the particles and the wall. By playing on the adhesion and the alignment with the wall, we are able to reproduce the experimental results. Indeed, the implementation of these interactions at the wall enables, to a certain extent, to take into account numerically the background fluid and thus the hydrodynamic and phoretic interactions that our colloids have with the wall. We thus show that these interactions greatly exacerbates the polarization of the propulsion velocity of the particles at the wall which is largely responsible for the density rise. Indeed, it is known that in the dilute and stationary regime, particles far from the wall are able to polarize against gravity. This polarization is amplified by an alignement with a vertical wall. Furthermore, the addition of an additional attraction allows particles to be more strongly trapped at the wall, and rise higher than ABPs without wall interactions would. As they rise, the particles will "evaporate" and fall away from the wall leading to global fluxes in the system. The wall acts as a pump that sets the particles in motion in the system collectively at a much larger scale than the particle. Finally, because we want to investigate the microrheology on active matter, we also present in this thesis all the updates on the design of a new magnetic microrheometer as well as the work on the stabilization of colloids on glass surfaces with the objective of designing custom imaging cells
Ghosh, Arijit. „Dynamics, Fluctuations and Rheological Applications of Magnetic Nanopropellers“. Thesis, 2014. http://etd.iisc.ac.in/handle/2005/2984.
Der volle Inhalt der QuelleGhosh, Arijit. „Dynamics, Fluctuations and Rheological Applications of Magnetic Nanopropellers“. Thesis, 2014. http://hdl.handle.net/2005/2984.
Der volle Inhalt der QuelleBücher zum Thema "Magnetic microrheology"
Furst, Eric M., und Todd M. Squires. Magnetic bead microrheology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199655205.003.0008.
Der volle Inhalt der QuelleFurst, Eric M., und Todd M. Squires. Microrheology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199655205.001.0001.
Der volle Inhalt der QuelleFurst, Eric M., und Todd M. Squires. Active microrheology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199655205.003.0007.
Der volle Inhalt der QuelleBuchteile zum Thema "Magnetic microrheology"
Castro, David J., Jin-Oh Song, Robert K. Lade und Lorraine F. Francis. „Magnetic Microrheology for Characterization of Viscosity in Coatings“. In Protective Coatings, 115–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51627-1_5.
Der volle Inhalt der QuelleRadiom, Milad, Evdokia K. Oikonomou, Arnaud Grados, Mathieu Receveur und Jean-François Berret. „Probing DNA-Amyloid Interaction and Gel Formation by Active Magnetic Wire Microrheology“. In Methods in Molecular Biology, 285–303. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2529-3_19.
Der volle Inhalt der QuelleCēbers, A. „Magnetic Soft Matter in a Rotating Field“. In Magnetic Soft Matter, 339–78. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781839169755-00339.
Der volle Inhalt der QuelleYang, Yali, und Megan T. Valentine. „Determining the Structure–Mechanics Relationships of Dense Microtubule Networks with Confocal Microscopy and Magnetic Tweezers-Based Microrheology“. In Methods in Cell Biology, 75–96. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-407757-7.00006-2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Magnetic microrheology"
Valentine, Megan T. „Microscale Manipulation by NdFeB-Based Magnetic Tweezers: Applications to Microrheology“. In Optical Trapping Applications. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/ota.2013.tw4d.5.
Der volle Inhalt der QuelleJeong, Moonkwang, Eunjin Choi, Dandan Li, Stefano Palagi, Peer Fischer und Tian Qiu. „A Magnetic Actuation System for the Active Microrheology in Soft Biomaterials“. In 2019 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). IEEE, 2019. http://dx.doi.org/10.1109/marss.2019.8860985.
Der volle Inhalt der Quelle