Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Machinerie Polycomb“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Machinerie Polycomb" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Machinerie Polycomb"
Chen, Xin, Mark Hiller, Yasemin Sancak und Margaret T. Fuller. „Tissue-Specific TAFs Counteract Polycomb to Turn on Terminal Differentiation“. Science 310, Nr. 5749 (03.11.2005): 869–72. http://dx.doi.org/10.1126/science.1118101.
Der volle Inhalt der QuelleChiacchiera, Fulvio, und Diego Pasini. „Control of adult intestinal identity by the Polycomb repressive machinery“. Cell Cycle 16, Nr. 3 (28.11.2016): 243–44. http://dx.doi.org/10.1080/15384101.2016.1252582.
Der volle Inhalt der QuelleKaundal, Babita, Anup K. Srivastava, Mohammed Nadim Sardoiwala, Surajit Karmakar und Subhasree Roy Choudhury. „A NIR-responsive indocyanine green-genistein nanoformulation to control the polycomb epigenetic machinery for the efficient combinatorial photo/chemotherapy of glioblastoma“. Nanoscale Advances 1, Nr. 6 (2019): 2188–207. http://dx.doi.org/10.1039/c9na00212j.
Der volle Inhalt der QuelleKuehner und Yao. „The Dynamic Partnership of Polycomb and Trithorax in Brain Development and Diseases“. Epigenomes 3, Nr. 3 (21.08.2019): 17. http://dx.doi.org/10.3390/epigenomes3030017.
Der volle Inhalt der QuelleFlora, Pooja, Gil Dalal, Idan Cohen und Elena Ezhkova. „Polycomb Repressive Complex(es) and Their Role in Adult Stem Cells“. Genes 12, Nr. 10 (24.09.2021): 1485. http://dx.doi.org/10.3390/genes12101485.
Der volle Inhalt der QuelleCruz-Becerra, Grisel, Mandy Juárez, Viviana Valadez-Graham und Mario Zurita. „Analysis of Drosophila p8 and p52 mutants reveals distinct roles for the maintenance of TFIIH stability and male germ cell differentiation“. Open Biology 6, Nr. 10 (Oktober 2016): 160222. http://dx.doi.org/10.1098/rsob.160222.
Der volle Inhalt der QuelleBreiling, Achim, Edgar Bonte, Simona Ferrari, Peter B. Becker und Renato Paro. „The Drosophila Polycomb Protein Interacts with Nucleosomal Core Particles In Vitro via Its Repression Domain“. Molecular and Cellular Biology 19, Nr. 12 (01.12.1999): 8451–60. http://dx.doi.org/10.1128/mcb.19.12.8451.
Der volle Inhalt der QuelleLuo, Xi, Kelly Schoch, Sharayu V. Jangam, Venkata Hemanjani Bhavana, Hillary K. Graves, Sujay Kansagra, Joan M. Jasien et al. „Rare deleterious de novo missense variants in Rnf2/Ring2 are associated with a neurodevelopmental disorder with unique clinical features“. Human Molecular Genetics 30, Nr. 14 (16.04.2021): 1283–92. http://dx.doi.org/10.1093/hmg/ddab110.
Der volle Inhalt der QuelleLeicher, Rachel, Eva J. Ge, Xingcheng Lin, Matthew J. Reynolds, Wenjun Xie, Thomas Walz, Bin Zhang, Tom W. Muir und Shixin Liu. „Single-molecule and in silico dissection of the interaction between Polycomb repressive complex 2 and chromatin“. Proceedings of the National Academy of Sciences 117, Nr. 48 (18.11.2020): 30465–75. http://dx.doi.org/10.1073/pnas.2003395117.
Der volle Inhalt der QuelleRouleau, M., D. McDonald, P. Gagné, M. E. Ouellet, A. Droit, J. M. Hunter, S. Dutertre, C. Prigent, M. J. Hendzel und G. G. Poirier. „PARP-3 associates with polycomb group bodies and with components of the DNA damage repair machinery“. Journal of Cellular Biochemistry 100, Nr. 2 (01.02.2007): 385–401. http://dx.doi.org/10.1002/jcb.21051.
Der volle Inhalt der QuelleDissertationen zum Thema "Machinerie Polycomb"
Lee, Ming-Kang. „PRC1, PRC2 and BAP1 : Three tightly-linked chromatin modifiers involved in transcriptional regulation“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS055.
Der volle Inhalt der QuelleIn eukaryotes, the maintenance of cell identity entails the precise control of gene expression, which results from the concerted actions of transcription factors and factors controlling chromatin structure. Polycomb repressive complex 1 and 2 (PRC1 and PRC2) are chromatin modifiers that orchestrate transcriptional repression by catalyzing H2Aub and H3K27me3, respectively. By contrast, BRCA1-associated protein 1 (BAP1) promotes transcription by removing H2Aub, acting as an antagonist of PRC1. However, the detailed mechanism of how BAP1 regulates transcription remains largely elusive. The interplay between PRC1 and PRC2 is also far from being fully understood. My PhD study aimed at investigating the underlying mechanisms for these two important questions.(1) BAP1 is recruited to a subset of active enhancers where it stabilizes BRD4 occupancy.In these studies, we showed that BAP1 promotes transcription by opposing PRC1 activity, and that BAP1 is mostly inert in its absence. Genome-wide analysis revealed that BAP1 is recruited to a subset of active enhancers. Besides, inactivation of BAP1 led to accumulation of H2Aub and impaired BRD4 recruitment. Consistently, super-resolution microscopy demonstrated reduced condensates of BRD4 and MED1 in BAP1-KO cells. This suggests that BAP1 has a crucial function for the integrity of a subset of enhancers. Importantly, by treating isogenic cells with BET inhibitors, we showed that cells mutant for BAP1 display a more pronounced proliferative response. This result suggests that further perturbation of enhancers function could be a therapeutic strategy for BAP1-null malignancies.(2) PRC2 represses transcription independently of PRC1PRC1 and PRC2 are long considered cooperating to maintain gene repression. However, analyzing transcriptomic profiles of PRC1-null, PRC2-null and PRC1/2-null cells, we demonstrated that both PRC1 and PRC2 can autonomously repress transcription. Through both unbiased and candidate-based approaches, we focus on identifying downstream effectors of PRC2-mediated silencing in the absence of PRC1. This includes investigating the roles of previously proposed H3K27me3 readers. While this study is still ongoing, it is likely that it will reveal new actor for PRC2-mediated repression
McLaughlin, Kathryn Anne. „Role of DNA methylation and Polycomb machineries in directing higher-order chromatin architecture in embryonic stem cell“. Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31400.
Der volle Inhalt der Quelle