Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Machine learning potential“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Machine learning potential" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Machine learning potential"
Mueller, Tim, Alberto Hernandez und Chuhong Wang. „Machine learning for interatomic potential models“. Journal of Chemical Physics 152, Nr. 5 (07.02.2020): 050902. http://dx.doi.org/10.1063/1.5126336.
Der volle Inhalt der QuelleNg, Wenfa. „Evaluating the Potential of Applying Machine Learning Tools to Metabolic Pathway Optimization“. Biotechnology and Bioprocessing 2, Nr. 9 (02.11.2021): 01–07. http://dx.doi.org/10.31579/2766-2314/060.
Der volle Inhalt der QuelleBarbour, Dennis L., und Jan-Willem A. Wasmann. „Performance and Potential of Machine Learning Audiometry“. Hearing Journal 74, Nr. 3 (26.02.2021): 40,43,44. http://dx.doi.org/10.1097/01.hj.0000737592.24476.88.
Der volle Inhalt der QuelleTherrien, Audrey C., Berthié Gouin-Ferland und Mohammad Mehdi Rahimifar. „Potential of edge machine learning for instrumentation“. Applied Optics 61, Nr. 8 (02.03.2022): 1930. http://dx.doi.org/10.1364/ao.445798.
Der volle Inhalt der QuelleAwan, Kamran H., S. Satish Kumar und Indu Bharkavi SK. „Potential Role of Machine Learning in Oncology“. Journal of Contemporary Dental Practice 20, Nr. 5 (2019): 529–30. http://dx.doi.org/10.5005/jp-journals-10024-2551.
Der volle Inhalt der QuelleDral, Pavlo O., Alec Owens, Alexey Dral und Gábor Csányi. „Hierarchical machine learning of potential energy surfaces“. Journal of Chemical Physics 152, Nr. 20 (29.05.2020): 204110. http://dx.doi.org/10.1063/5.0006498.
Der volle Inhalt der QuelleWu, Yuexiang. „Potential pulsars prediction based on machine learning“. Theoretical and Natural Science 12, Nr. 1 (17.11.2023): 193–201. http://dx.doi.org/10.54254/2753-8818/12/20230466.
Der volle Inhalt der QuelleAschepkov, Valeriy. „METHODS OF MACHINE LEARNING IN MODERN METROLOGY“. Measuring Equipment and Metrology 85 (2024): 57–60. http://dx.doi.org/10.23939/istcmtm2024.01.057.
Der volle Inhalt der QuelleZelinska, Snizhana. „Machine learning: technologies and potential application at mining companies“. E3S Web of Conferences 166 (2020): 03007. http://dx.doi.org/10.1051/e3sconf/202016603007.
Der volle Inhalt der QuelleSarkar, Soumyadip. „Quantum Machine Learning: A Review“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 3 (31.03.2023): 352–54. http://dx.doi.org/10.22214/ijraset.2023.49421.
Der volle Inhalt der QuelleDissertationen zum Thema "Machine learning potential"
Ohlsson, Caroline. „Exploring the potential of machine learning : How machine learning can support financial risk management“. Thesis, Uppsala universitet, Företagsekonomiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-324684.
Der volle Inhalt der QuelleHu, Jinli. „Potential based prediction markets : a machine learning perspective“. Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/29000.
Der volle Inhalt der QuelleGustafson, Jonas. „Using Machine Learning to Identify Potential Problem Gamblers“. Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-163640.
Der volle Inhalt der QuelleVeit, Max David. „Designing a machine learning potential for molecular simulation of liquid alkanes“. Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/290295.
Der volle Inhalt der QuelleHellsing, Edvin, und Joel Klingberg. „It’s a Match: Predicting Potential Buyers of Commercial Real Estate Using Machine Learning“. Thesis, Uppsala universitet, Institutionen för informatik och media, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445229.
Der volle Inhalt der QuelleDenna uppsats har undersökt utvecklingen av och potentiella effekter med ett intelligent beslutsstödssystem (IDSS) för att prediktera potentiella köpare av kommersiella fastigheter. Det övergripande behovet av ett sådant system har identifierats existerar på grund av informtaionsöverflöd, vilket systemet avser att reducera. Genom att förkorta bearbetningstiden av data kan tid allokeras till att skapa förståelse av omvärlden med kollegor. Systemarkitekturen som undersöktes bestod av att gruppera köpare av kommersiella fastigheter i kluster baserat på deras köparegenskaper, och sedan träna en prediktionsmodell på historiska transkationsdata från den svenska fastighetsmarknaden från Lantmäteriet. Prediktionsmodellen tränades på att prediktera vilken av grupperna som mest sannolikt kommer köpa en given fastighet. Tre olika klusteralgoritmer användes och utvärderades för grupperingen, en densitetsbaserad, en centroidbaserad och en hierarkiskt baserad. Den som presterade bäst var var den centroidbaserade (K-means). Tre övervakade maskininlärningsalgoritmer användes och utvärderades för prediktionerna. Dessa var Naive Bayes, Random Forests och Support Vector Machines. Modellen baserad p ̊a Random Forests presterade bäst, med en noggrannhet om 99,9%.
Ntsaluba, Kuselo Ntsika. „AI/Machine learning approach to identifying potential statistical arbitrage opportunities with FX and Bitcoin Markets“. Master's thesis, Faculty of Commerce, 2019. http://hdl.handle.net/11427/31185.
Der volle Inhalt der QuelleSkabar, Andrew Alojz. „Inductive learning techniques for mineral potential mapping“. Thesis, Queensland University of Technology, 2001.
Den vollen Inhalt der Quelle findenSyed, Tahir Qasim. „Analysis of the migratory potential of cancerous cells by image preprocessing, segmentation and classification“. Thesis, Evry-Val d'Essonne, 2011. http://www.theses.fr/2011EVRY0041/document.
Der volle Inhalt der QuelleThis thesis is part of a broader research project which aims to analyze the potential migration of cancer cells. As part of this doctorate, we are interested in the use of image processing to count and classify cells present in an image acquired usinga microscope. The partner biologists of this project study the influence of the environment on the migratory behavior of cancer cells from cell cultures grown on different cancer cell lines. The processing of biological images has so far resulted in a significant number of publications, but in the case discussed here, since the protocol for the acquisition of images acquired was not fixed, the challenge was to propose a chain of adaptive processing that does not constrain the biologists in their research. Four steps are detailed in this paper. The first concerns the definition of pre-processing steps to homogenize the conditions of acquisition. The choice to use the image of standard deviations rather than the brightness is one of the results of this first part. The second step is to count the number of cells present in the image. An original filter, the so-called “halo” filter, that reinforces the centre of the cells in order to facilitate counting, has been proposed. A statistical validation step of the centres affords more reliability to the result. The stage of image segmentation, undoubtedly the most difficult, constitutes the third part of this work. This is a matter of extracting images each containing a single cell. The choice of segmentation algorithm was that of the “watershed”, but it was necessary to adapt this algorithm to the context of images included in this study. The proposal to use a map of probabilities as input yielded a segmentation closer to the edges of cells. As against this method leads to an over-segmentation must be reduced in order to move towards the goal: “one region = one cell”. For this algorithm the concept of using a cumulative hierarchy based on mathematical morphology has been developed. It allows the aggregation of adjacent regions by working on a tree representation ofthese regions and their associated level. A comparison of the results obtained by this method with those proposed by other approaches to limit over-segmentation has allowed us to prove the effectiveness of the proposed approach. The final step of this work consists in the classification of cells. Three classes were identified: spread cells (mesenchymal migration), “blebbing” round cells (amoeboid migration) and “smooth” round cells (intermediate stage of the migration modes). On each imagette obtained at the end of the segmentation step, intensity, morphological and textural features were calculated. An initial analysis of these features has allowed us to develop a classification strategy, namely to first separate the round cells from spread cells, and then separate the “smooth” and “blebbing” round cells. For this we divide the parameters into two sets that will be used successively in Two the stages of classification. Several classification algorithms were tested, to retain in the end, the use of two neural networks to obtain over 80% of good classification between long cells and round cells, and nearly 90% of good Classification between “smooth” and “blebbing” round cells
Egieyeh, Samuel Ayodele. „Computational strategies to identify, prioritize and design potential antimalarial agents from natural products“. University of the Western Cape, 2015. http://hdl.handle.net/11394/5058.
Der volle Inhalt der QuelleIntroduction: There is an exigent need to develop novel antimalarial drugs in view of the mounting disease burden and emergent resistance to the presently used drugs against the malarial parasites. A large amount of natural products, especially those used in ethnomedicine for malaria, have shown varying in-vitro antiplasmodial activities. Facilitating antimalarial drug development from this wealth of natural products is an imperative and laudable mission to pursue. However, the limited resources, high cost, low prospect and the high cost of failure during preclinical and clinical studies might militate against pursue of this mission. Chemoinformatics techniques can simulate and predict essential molecular properties required to characterize compounds thus eliminating the cost of equipment and reagents to conduct essential preclinical studies, especially on compounds that may fail during drug development. Therefore, applying chemoinformatics techniques on natural products with in-vitro antiplasmodial activities may facilitate identification and prioritization of these natural products with potential for novel mechanism of action, desirable pharmacokinetics and high likelihood for development into antimalarial drugs. In addition, unique structural features mined from these natural products may be templates to design new potential antimalarial compounds. Method: Four chemoinformatics techniques were applied on a collection of selected natural products with in-vitro antiplasmodial activity (NAA) and currently registered antimalarial drugs (CRAD): molecular property profiling, molecular scaffold analysis, machine learning and design of a virtual compound library. Molecular property profiling included computation of key molecular descriptors, physicochemical properties, molecular similarity analysis, estimation of drug-likeness, in-silico pharmacokinetic profiling and exploration of structure-activity landscape. Analysis of variance was used to assess statistical significant differences in these parameters between NAA and CRAD. Next, molecular scaffold exploration and diversity analyses were performed on three datasets (NAA, CRAD and malarial data from Medicines for Malarial Ventures (MMV)) using scaffold counts and cumulative scaffold frequency plots. Scaffolds from the NAA were compared to those from CRAD and MMV. A Scaffold Tree was also generated for all the datasets. Thirdly, machine learning approaches were used to build four regression and four classifier models from bioactivity data of NAA using molecular descriptors and molecular fingerprints. Models were built and refined by leave-one-out cross-validation and evaluated with an independent test dataset. Applicability domain (AD), which defines the limit of reliable predictability by the models, was estimated from the training dataset and validated with the test dataset. Possible chemical features associated with reported antimalarial activities of the compounds were also extracted. Lastly, virtual compound libraries were generated with the unique molecular scaffolds identified from the NAA. The virtual compounds generated were characterized by evaluating selected molecular descriptors, toxicity profile, structural diversity from CRAD and prediction of antiplasmodial activity. Results: From the molecular property profiling, a total of 1040 natural products were selected and a total of 13 molecular descriptors were analyzed. Significant differences were observed between the natural products with in-vitro antiplasmodial activities (NAA) and currently registered antimalarial drugs (CRAD) for at least 11 of the molecular descriptors. Molecular similarity and chemical space analysis identified NAA that were structurally diverse from CRAD. Over 50% of NAA with desirable drug-like properties were identified. However, nearly 70% of NAA were identified as potentially "promiscuous" compounds. Structure-activity landscape analysis highlighted compound pairs that formed "activity cliffs". In all, prioritization strategies for the natural products with in-vitro antiplasmodial activities were proposed. The scaffold exploration and analysis results revealed that CRAD exhibited greater scaffold diversity, followed by NAA and MMV respectively. Unique scaffolds that were not contained in any other compounds in the CRAD datasets were identified in NAA. The Scaffold Tree showed the preponderance of ring systems in NAA and identified virtual scaffolds, which maybe potential bioactive compounds or elucidate the NAA possible synthetic routes. From the machine learning study, the regression and classifier models that were most suitable for NAA were identified as model tree M5P (correlation coefficient = 0.84) and Sequential Minimization Optimization (accuracy = 73.46%) respectively. The test dataset fitted into the applicability domain (AD) defined by the training dataset. The “amine” group was observed to be essential for antimalarial activity in both NAA and MMV dataset but hydroxyl and carbonyl groups may also be relevant in the NAA dataset. The results of the characterization of the virtual compound library showed significant difference (p value < 0.05) between the virtual compound library and currently registered antimalarial drugs in some molecular descriptors (molecular weight, log partition coefficient, hydrogen bond donors and acceptors, polar surface area, shape index, chiral centres, and synthetic feasibility). Tumorigenic and mutagenic substructures were not observed in a large proportion (> 90%) of the virtual compound library. The virtual compound libraries showed sufficient diversity in structures and majority were structurally diverse from currently registered antimalarial drugs. Finally, up to 70% of the virtual compounds were predicted as active antiplasmodial agents. Conclusions:Molecular property profiling of natural products with in-vitro antiplasmodial activities (NAA) and currently registered antimalarial drugs (CRAD) produced a wealth of information that may guide decisions and facilitate antimalarial drug development from natural products and led to a prioritized list of natural products with in-vitro antiplasmodial activities. Molecular scaffold analysis identified unique scaffolds and virtual scaffolds from NAA that possess desirable drug-like properties, which make them ideal starting points for molecular antimalarial drug design. The machine learning study built, evaluated and identified amply accurate regression and classifier accurate models that were used for virtual screening of natural compound libraries to mine possible antimalarial compounds without the expense of bioactivity assays. Finally, a good amount of the virtual compounds generated were structurally diverse from currently registered antimalarial drugs and potentially active antiplasmodial agents. Filtering and optimization may lead to a collection of virtual compounds with unique chemotypes that may be synthesized and added to screening deck against Plasmodium.
Nyman, Måns, und Caner Naim Ulug. „Exploring the Potential for Machine Learning Techniques to Aid in Categorizing Electron Trajectories during Magnetic Reconnection“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279982.
Der volle Inhalt der QuelleMagnetisk rekonnektion påverkar rymdvädret som har en direkt påverkan på våra nutida teknologiska system. Således kan fenomenet ge allvarliga konsekvenser för människor. Forskare inom detta fält tror att elektrondynamiken spelar en viktig roll i magnetisk rekonnektion. Magnetisk rekonnektion är ett ämne som har studerats under lång tid men ännu förblir många aspekter av fenomenet outforskade. Under magnetisk rekonnektion kan elektroner accelereras till höga hastigheter. En stor mängd studier har gjorts angående trajektorierna som dessa elektroner uppvisar och forskare som är aktiva inom detta forskningsområde skulle enkelt kunna bestämma vilken sorts trajektoria en specifik elektron uppvisar givet en grafisk illustration av sagda trajektoria. Att försöka göra detta för ett mer realistiskt antal elektroner manuellt är dock ingen enkel eller effektiv uppgift att ta sig an. Genom användning av Maskininlärningstekniker för att försöka kategorisera dessa trajektorier skulle denna process kunna göras mycket mer effektiv. Ännu har dock inga försök att göra detta gjorts. I denna uppsats gjordes ett försök att besvara hur väl vissa Maskinlärningstekniker presterar i detta avseende. Principal component analysis och K-means clustering var huvudmetoderna som användes, applicerade med olika sorters förbehandling av den givna datan. Elbow-metoden användes för att hitta det optimala K-värdet och kompletterades av Self-Organizing Maps. Silhouette coefficient användes för att mäta resultaten av dessa metoder. Förbehandlingsmetoderna First-centering och Mean-centering gav de två högsta siluett-koefficienterna och uppvisade således de bästa kvantitativa resultaten. Inspektion av klustrarna pekade dock på avsaknad av perfekt överlappning, både mellan klasserna som upptäcktes av de tillämpade metoderna samt klasserna som har identifierats i tidigare artiklar inom fysik. Trots detta visade sig Maskininlärningsmetoder besitta viss potential som är värt att utforska i större detalj i framtida studier inom fältet magnetisk rekonnektion.
Bücher zum Thema "Machine learning potential"
Bennaceur, Amel, Reiner Hähnle und Karl Meinke, Hrsg. Machine Learning for Dynamic Software Analysis: Potentials and Limits. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96562-8.
Der volle Inhalt der QuellePolyakova, Anna, Tat'yana Sergeeva und Irina Kitaeva. The continuous formation of the stochastic culture of schoolchildren in the context of the digital transformation of general education. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1876368.
Der volle Inhalt der QuelleTaha, Zahari, Rabiu Muazu Musa, Mohamad Razali Abdullah und Anwar P.P.Abdul Majeed. Machine Learning in Sports: Identifying Potential Archers. Springer, 2018.
Den vollen Inhalt der Quelle findenPumperla, Max, Alex Tellez und Michal Malohlava. Mastering Machine Learning with Spark 2.x: Harness the potential of machine learning, through spark. Packt Publishing - ebooks Account, 2017.
Den vollen Inhalt der Quelle findenQuantum Machine Learning: Unleashing Potential in Science and Industry. Primedia eLaunch LLC, 2023.
Den vollen Inhalt der Quelle findenNagel, Stefan. Machine Learning in Asset Pricing. Princeton University Press, 2021. http://dx.doi.org/10.23943/princeton/9780691218700.001.0001.
Der volle Inhalt der QuelleAI and Deep Learning in Biometric Security: Trends, Potential, and Challenges. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenJaswal, Gaurav, Vivek Kanhangad und Raghavendra Ramachandra. AI and Deep Learning in Biometric Security: Trends, Potential, and Challenges. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenJaswal, Gaurav, Vivek Kanhangad und Raghavendra Ramachandra. AI and Deep Learning in Biometric Security: Trends, Potential, and Challenges. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenU.S. Air Force Enlisted Classification and Reclassification: Potential Improvements Using Machine Learning and Optimization Models. RAND Corporation, 2022. http://dx.doi.org/10.7249/rr-a284-1.
Der volle Inhalt der QuelleBuchteile zum Thema "Machine learning potential"
Muazu Musa, Rabiu, Zahari Taha, Anwar P. P. Abdul Majeed und Mohamad Razali Abdullah. „Psychological Variables in Ascertaining Potential Archers“. In Machine Learning in Sports, 21–27. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2592-2_3.
Der volle Inhalt der QuelleMookambal, M. Adithi, und S. Gokulakrishnan. „Potential Subscriber Detection Using Machine Learning“. In Advances in Intelligent Systems and Computing, 389–96. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51859-2_36.
Der volle Inhalt der QuelleLorena, Ana C., Marinez F. de Siqueira, Renato De Giovanni, André C. P. L. F. de Carvalho und Ronaldo C. Prati. „Potential Distribution Modelling Using Machine Learning“. In New Frontiers in Applied Artificial Intelligence, 255–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-69052-8_27.
Der volle Inhalt der QuelleMuazu Musa, Rabiu, Zahari Taha, Anwar P. P. Abdul Majeed und Mohamad Razali Abdullah. „Psycho-Fitness Parameters in the Identification of High-Potential Archers“. In Machine Learning in Sports, 37–44. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2592-2_5.
Der volle Inhalt der QuelleNagabhushan, P., Sanjay Kumar Sonbhadra, Narinder Singh Punn und Sonali Agarwal. „Towards Machine Learning to Machine Wisdom: A Potential Quest“. In Big Data Analytics, 261–75. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93620-4_19.
Der volle Inhalt der QuelleKhine, Myint Swe. „Exploring the Potential of Machine Learning in Educational Research“. In Machine Learning in Educational Sciences, 3–8. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9379-6_1.
Der volle Inhalt der QuelleSharma, Shashi, Soma Kumawat und Kumkum Garg. „Predicting Student Potential Using Machine Learning Techniques“. In Advances in Intelligent Systems and Computing, 485–95. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2594-7_40.
Der volle Inhalt der QuelleHu, Gebiao, Zhichi Lin, Zheng Guo, Ruiqing Xu und Xiao Zhang. „Research on Potential Threat Identification Algorithm for Electric UAV Network Communication“. In Machine Learning for Cyber Security, 649–63. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-20096-0_49.
Der volle Inhalt der QuelleMuazu Musa, Rabiu, Anwar P. P. Abdul Majeed, Norlaila Azura Kosni und Mohamad Razali Abdullah. „Physical Fitness Parameters in the Identification of High-Potential Sepak Takraw Players“. In Machine Learning in Team Sports, 41–48. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3219-1_5.
Der volle Inhalt der QuelleYang, Xianhai, Huihui Liu, Rebecca Kusko und Huixiao Hong. „ED Profiler: Machine Learning Tool for Screening Potential Endocrine-Disrupting Chemicals“. In Machine Learning and Deep Learning in Computational Toxicology, 243–62. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20730-3_10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Machine learning potential"
S, Thanigaivelu P., Priyanka Dash, Sravan Kumar G, S. Viveka, Vijayasri Nidadavolu und V. Gautham. „Investigating the Potential of Self-Supervised Learning in Adversarial Machine Learning“. In 2024 International Conference on Advances in Computing Research on Science Engineering and Technology (ACROSET), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/acroset62108.2024.10743375.
Der volle Inhalt der QuelleCérin, Christophe, Walid Saad, Congfeng Jiang und Emna Mekni. „Where are the optimization potential of machine learning kernels?“ In 2019 IEEE 5th International Conference on Big Data Intelligence and Computing (DATACOM), 130–36. IEEE, 2019. http://dx.doi.org/10.1109/datacom.2019.00028.
Der volle Inhalt der QuelleGarg, Swati, Chandra Sekhar und Lov Kumar. „Unlocking Potential: A Machine Learning Approach to Job Category Prediction“. In 2024 IEEE Region 10 Symposium (TENSYMP), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/tensymp61132.2024.10752119.
Der volle Inhalt der QuelleXing, Shuaifei, Hankiz Yilahun und Askar Hamdulla. „Enhancing Knowledge Graph Completion by Extracting Potential Positive Examples“. In 2024 IEEE 5th International Conference on Pattern Recognition and Machine Learning (PRML), 177–83. IEEE, 2024. https://doi.org/10.1109/prml62565.2024.10779715.
Der volle Inhalt der QuellePatil, Sachin C., Sairam Madasu, Krishna J. Rolla, Ketan Gupta und N. Yuvaraj. „Examining the Potential of Machine Learning in Reducing Prescription Drug Costs“. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10724434.
Der volle Inhalt der QuelleP, Dinusha, Subha Sreekumar und Lijiya A. „Detection of Potential Specific Learning Disabilities in Children through Handwriting Analysis Using Machine Learning“. In 2024 IEEE Region 10 Symposium (TENSYMP), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/tensymp61132.2024.10752261.
Der volle Inhalt der QuelleJin, Bolai. „Unlocking the Potential of Raw Images for Object Detection with YOLOv8 and BOT-SORT Techniques“. In 2024 5th International Conference on Machine Learning and Computer Application (ICMLCA), 252–57. IEEE, 2024. http://dx.doi.org/10.1109/icmlca63499.2024.10754493.
Der volle Inhalt der QuelleDuan, Dongliang, Weifeng Liu, Pengwen Chen, Murali Rao und Jose C. Principe. „Variance and Bias Analysis of Information Potential and Symmetric Information Potential“. In 2007 IEEE Workshop on Machine Learning for Signal Processing. IEEE, 2007. http://dx.doi.org/10.1109/mlsp.2007.4414339.
Der volle Inhalt der QuelleBalyakin, I. A., und A. A. Rempel. „Machine learning interatomic potential for molten TiZrHfNb“. In THE VII INTERNATIONAL YOUNG RESEARCHERS’ CONFERENCE – PHYSICS, TECHNOLOGY, INNOVATIONS (PTI-2020). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0032302.
Der volle Inhalt der QuelleAliod, Carles. „Machine learning the C5H5 potential energy surface.“ In Proposed for presentation at the Unimolecular reactions Faraday Discussion held June 22-24, 2022 in Oxford, United Kingdom. US DOE, 2022. http://dx.doi.org/10.2172/2003611.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Machine learning potential"
Lundquist, Sheng. Exploring the Potential of Sparse Coding for Machine Learning. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.7484.
Der volle Inhalt der QuelleMusser, Micah, und Ashton Garriott. Machine Learning and Cybersecurity: Hype and Reality. Center for Security and Emerging Technology, Juni 2021. http://dx.doi.org/10.51593/2020ca004.
Der volle Inhalt der QuelleNickerson, Jeffrey, Kalle Lyytinen und John L. King. Automated Vehicles: A Human/Machine Co-learning Perspective. SAE International, April 2022. http://dx.doi.org/10.4271/epr2022009.
Der volle Inhalt der QuelleLewin, Alex, Karla Diaz-Ordaz, Chris Bonell, James Hargreaves und Edoardo Masset. Machine learning for impact evaluation in CEDIL-funded studies: an ex ante lesson learning paper. Centre for Excellence and Development Impact and Learning (CEDIL), April 2023. http://dx.doi.org/10.51744/llp3.
Der volle Inhalt der QuelleTaylor, Michael, und Nicholas Lubbers. IMS Rapid Response 2024 Summary Report: A Machine Learning Potential for the Periodic Table. Office of Scientific and Technical Information (OSTI), Oktober 2024. http://dx.doi.org/10.2172/2460463.
Der volle Inhalt der QuelleBurton, Simon. The Path to Safe Machine Learning for Automotive Applications. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, Oktober 2023. http://dx.doi.org/10.4271/epr2023023.
Der volle Inhalt der QuelleDutta, Sourav, Anna Wagner, Theadora Hall und Nawa Raj Pradhan. Data-driven modeling of groundwater level using machine learning. Engineer Research and Development Center (U.S.), Mai 2024. http://dx.doi.org/10.21079/11681/48452.
Der volle Inhalt der QuelleOgunbire, Abimbola, Panick Kalambay, Hardik Gajera und Srinivas Pulugurtha. Deep Learning, Machine Learning, or Statistical Models for Weather-related Crash Severity Prediction. Mineta Transportation Institute, Dezember 2023. http://dx.doi.org/10.31979/mti.2023.2320.
Der volle Inhalt der QuelleAlonso-Robisco, Andrés, José Manuel Carbó und José Manuel Carbó. Machine Learning methods in climate finance: a systematic review. Madrid: Banco de España, Februar 2023. http://dx.doi.org/10.53479/29594.
Der volle Inhalt der Quellede Luis, Mercedes, Emilio Rodríguez und Diego Torres. Machine learning applied to active fixed-income portfolio management: a Lasso logit approach. Madrid: Banco de España, September 2023. http://dx.doi.org/10.53479/33560.
Der volle Inhalt der Quelle