Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Machine Learning Informé“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Machine Learning Informé" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Machine Learning Informé"
Shoureshi, R., D. Swedes und R. Evans. „Learning Control for Autonomous Machines“. Robotica 9, Nr. 2 (April 1991): 165–70. http://dx.doi.org/10.1017/s0263574700010201.
Der volle Inhalt der QuellePateras, Joseph, Pratip Rana und Preetam Ghosh. „A Taxonomic Survey of Physics-Informed Machine Learning“. Applied Sciences 13, Nr. 12 (07.06.2023): 6892. http://dx.doi.org/10.3390/app13126892.
Der volle Inhalt der QuelleMinasny, Budiman, Toshiyuki Bandai, Teamrat A. Ghezzehei, Yin-Chung Huang, Yuxin Ma, Alex B. McBratney, Wartini Ng et al. „Soil Science-Informed Machine Learning“. Geoderma 452 (Dezember 2024): 117094. http://dx.doi.org/10.1016/j.geoderma.2024.117094.
Der volle Inhalt der QuelleXypakis, Emmanouil, Valeria deTurris, Fabrizio Gala, Giancarlo Ruocco und Marco Leonetti. „Physics-informed machine learning for microscopy“. EPJ Web of Conferences 266 (2022): 04007. http://dx.doi.org/10.1051/epjconf/202226604007.
Der volle Inhalt der QuelleZhao, Hefei, Yinglun Zhan, Joshua Nduwamungu, Yuzhen Zhou, Changmou Xu und Zheng Xu. „Machine learning-driven Raman spectroscopy for rapidly detecting type, adulteration, and oxidation of edible oils“. INFORM International News on Fats, Oils, and Related Materials 31, Nr. 4 (01.04.2020): 12–15. http://dx.doi.org/10.21748/inform.04.2020.12.
Der volle Inhalt der QuelleSerre, Thomas. „Deep Learning: The Good, the Bad, and the Ugly“. Annual Review of Vision Science 5, Nr. 1 (15.09.2019): 399–426. http://dx.doi.org/10.1146/annurev-vision-091718-014951.
Der volle Inhalt der QuelleArundel, Samantha T., Gaurav Sinha, Wenwen Li, David P. Martin, Kevin G. McKeehan und Philip T. Thiem. „Historical maps inform landform cognition in machine learning“. Abstracts of the ICA 6 (11.08.2023): 1–2. http://dx.doi.org/10.5194/ica-abs-6-10-2023.
Der volle Inhalt der QuelleKarimpouli, Sadegh, und Pejman Tahmasebi. „Physics informed machine learning: Seismic wave equation“. Geoscience Frontiers 11, Nr. 6 (November 2020): 1993–2001. http://dx.doi.org/10.1016/j.gsf.2020.07.007.
Der volle Inhalt der QuelleZhang, Xi. „Application of Machine Learning in Stock Price Analysis“. Highlights in Science, Engineering and Technology 107 (15.08.2024): 143–49. http://dx.doi.org/10.54097/tjhsx998.
Der volle Inhalt der QuelleLiu, Yang, Ruo Jia, Jieping Ye und Xiaobo Qu. „How machine learning informs ride-hailing services: A survey“. Communications in Transportation Research 2 (Dezember 2022): 100075. http://dx.doi.org/10.1016/j.commtr.2022.100075.
Der volle Inhalt der QuelleDissertationen zum Thema "Machine Learning Informé"
Guimbaud, Jean-Baptiste. „Enhancing Environmental Risk Scores with Informed Machine Learning and Explainable AI“. Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10188.
Der volle Inhalt der QuelleFrom conception onward, environmental factors such as air quality or dietary habits can significantly impact the risk of developing various chronic diseases. Within the epidemiological literature, indicators known as Environmental Risk Scores (ERSs) are used not only to identify individuals at risk but also to study the relationships between environmental factors and health. A limit of most ERSs is that they are expressed as linear combinations of a limited number of factors. This doctoral thesis aims to develop ERS indicators able to investigate nonlinear relationships and interactions across a broad range of exposures while discovering actionable factors to guide preventive measures and interventions, both in adults and children. To achieve this aim, we leverage the predictive abilities of non-parametric machine learning methods, combined with recent Explainable AI tools and existing domain knowledge. In the first part of this thesis, we compute machine learning-based environmental risk scores for mental, cardiometabolic, and respiratory general health for children. On top of identifying nonlinear relationships and exposure-exposure interactions, we identified new predictors of disease in childhood. The scores could explain a significant proportion of variance and their performances were stable across different cohorts. In the second part, we propose SEANN, a new approach integrating expert knowledge in the form of Pooled Effect Sizes (PESs) into the training of deep neural networks for the computation of extit{informed environmental risk scores}. SEANN aims to compute more robust ERSs, generalizable to a broader population, and able to capture exposure relationships that are closer to evidence known from the literature. We experimentally illustrate the approach's benefits using synthetic data, showing improved prediction generalizability in noisy contexts (i.e., observational settings) and improved reliability of interpretation using Explainable Artificial Intelligence (XAI) methods compared to an agnostic neural network. In the last part of this thesis, we propose a concrete application for SEANN using data from a cohort of Spanish adults. Compared to an agnostic neural network-based ERS, the score obtained with SEANN effectively captures relationships more in line with the literature-based associations without deteriorating the predictive performances. Moreover, exposures with poor literature coverage significantly differ from those obtained with the agnostic baseline method with more plausible directions of associations.In conclusion, our risk scores demonstrate substantial potential for the data-driven discovery of unknown nonlinear environmental health relationships by leveraging existing knowledge about well-known relationships. Beyond their utility in epidemiological research, our risk indicators are able to capture holistic individual-level non-hereditary risk associations that can inform practitioners about actionable factors in high-risk individuals. As in the post-genetic era, personalized medicine prevention will focus more and more on modifiable factors, we believe that such approaches will be instrumental in shaping future healthcare paradigms
Mack, Jonas. „Physics Informed Machine Learning of Nonlinear Partial Differential Equations“. Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-441275.
Der volle Inhalt der QuelleLeung, Jason W. „Application of machine learning : automated trading informed by event driven data“. Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105982.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 61-65).
Models of stock price prediction have traditionally used technical indicators alone to generate trading signals. In this paper, we build trading strategies by applying machine-learning techniques to both technical analysis indicators and market sentiment data. The resulting prediction models can be employed as an artificial trader used to trade on any given stock exchange. The performance of the model is evaluated using the S&P 500 index.
by Jason W. Leung.
M. Eng.
Wu, Jinlong. „Predictive Turbulence Modeling with Bayesian Inference and Physics-Informed Machine Learning“. Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85129.
Der volle Inhalt der QuellePh. D.
Reynolds-Averaged Navier–Stokes (RANS) simulations are widely used for engineering design and analysis involving turbulent flows. In RANS simulations, the Reynolds stress needs closure models and the existing models have large model-form uncertainties. Therefore, the RANS simulations are known to be unreliable in many flows of engineering relevance, including flows with three-dimensional structures, swirl, pressure gradients, or curvature. This lack of accuracy in complex flows has diminished the utility of RANS simulations as a predictive tool for engineering design, analysis, optimization, and reliability assessments. Recently, data-driven methods have emerged as a promising alternative to develop the model of Reynolds stress for RANS simulations. In this dissertation I explore two physics-informed, data-driven frameworks to improve RANS modeled Reynolds stresses. First, a Bayesian inference framework is proposed to quantify and reduce the model-form uncertainty of RANS modeled Reynolds stress by leveraging online sparse measurement data with empirical prior knowledge. Second, a machine-learning-assisted framework is proposed to utilize offline high fidelity simulation databases. Numerical results show that the data-driven RANS models have better prediction of Reynolds stress and other quantities of interest for several canonical flows. Two metrics are also presented for an a priori assessment of the prediction confidence for the machine-learning-assisted RANS model. The proposed data-driven methods are also applicable to the computational study of other physical systems whose governing equations have some unresolved physics to be modeled.
Reichert, Nils. „CORRELATION BETWEEN COMPUTER RECOGNIZED FACIAL EMOTIONS AND INFORMED EMOTIONS DURING A CASINO COMPUTER GAME“. Thesis, Fredericton: University of New Brunswick, 2012. http://hdl.handle.net/1882/44596.
Der volle Inhalt der QuelleWang, Jianxun. „Physics-Informed, Data-Driven Framework for Model-Form Uncertainty Estimation and Reduction in RANS Simulations“. Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77035.
Der volle Inhalt der QuellePh. D.
Cedergren, Linnéa. „Physics-informed Neural Networks for Biopharma Applications“. Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185423.
Der volle Inhalt der QuelleEmerson, Guy Edward Toh. „Functional distributional semantics : learning linguistically informed representations from a precisely annotated corpus“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/284882.
Der volle Inhalt der QuelleGiuliani, Luca. „Extending the Moving Targets Method for Injecting Constraints in Machine Learning“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23885/.
Der volle Inhalt der QuelleAugustin, Lefèvre. „Méthodes d'apprentissage appliquées à la séparation de sources mono-canal“. Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00764546.
Der volle Inhalt der QuelleBücher zum Thema "Machine Learning Informé"
Interpretable Machine Learning for the Analysis, Design, Assessment, and Informed Decision Making for Civil Infrastructure. Elsevier Science & Technology, 2023.
Den vollen Inhalt der Quelle findenMadhu, G., Sandeep Kautish, A. Govardhan und Avinash Sharma, Hrsg. Emerging Computational Approaches in Telehealth and Telemedicine: A Look at The Post-COVID-19 Landscape. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150792721220101.
Der volle Inhalt der QuelleSmith, Gary, und Jay Cordes. The 9 Pitfalls of Data Science. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198844396.001.0001.
Der volle Inhalt der QuelleAnderson, Raymond A. Credit Intelligence & Modelling. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192844194.001.0001.
Der volle Inhalt der QuelleEl-Nasr, Magy Seif, Alessandro Canossa, Truong-Huy D. Nguyen und Anders Drachen. Game Data Science. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192897879.001.0001.
Der volle Inhalt der QuelleDowd, Cate. Digital Journalism, Drones, and Automation. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190655860.001.0001.
Der volle Inhalt der QuelleOulasvirta, Antti, Per Ola Kristensson, Xiaojun Bi und Andrew Howes, Hrsg. Computational Interaction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198799603.001.0001.
Der volle Inhalt der QuelleGiudici, Paolo, und Giulio Mignola. Big Data & Advanced Analytics per il Risk Management. AIFIRM, 2022. http://dx.doi.org/10.47473/2016ppa00035.
Der volle Inhalt der QuelleDobson, James E. Critical Digital Humanities. University of Illinois Press, 2019. http://dx.doi.org/10.5622/illinois/9780252042270.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Machine Learning Informé"
Neuer, Marcus J. „Physics-Informed Learning“. In Machine Learning for Engineers, 173–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2024. http://dx.doi.org/10.1007/978-3-662-69995-9_6.
Der volle Inhalt der QuelleBraga-Neto, Ulisses. „Physics-Informed Machine Learning“. In Fundamentals of Pattern Recognition and Machine Learning, 293–324. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-60950-3_12.
Der volle Inhalt der QuelleWang, Sifan, und Paris Perdikaris. „Adaptive Training Strategies for Physics-Informed Neural Networks“. In Knowledge-Guided Machine Learning, 133–60. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003143376-6.
Der volle Inhalt der QuelleSimm, Jaak, Adam Arany, Edward De Brouwer und Yves Moreau. „Expressive Graph Informer Networks“. In Machine Learning, Optimization, and Data Science, 198–212. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95470-3_15.
Der volle Inhalt der QuelleAfroze, Lameya, Silke Merkelbach, Sebastian von Enzberg und Roman Dumitrescu. „Domain Knowledge Injection Guidance for Predictive Maintenance“. In Machine Learning for Cyber-Physical Systems, 75–87. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47062-2_8.
Der volle Inhalt der QuelleSun, Alexander Y., Hongkyu Yoon, Chung-Yan Shih und Zhi Zhong. „Applications of Physics-Informed Scientific Machine Learning in Subsurface Science: A Survey“. In Knowledge-Guided Machine Learning, 111–32. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003143376-5.
Der volle Inhalt der QuelleDani, Harsh, Jundong Li und Huan Liu. „Sentiment Informed Cyberbullying Detection in Social Media“. In Machine Learning and Knowledge Discovery in Databases, 52–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71249-9_4.
Der volle Inhalt der QuelleMumtaz, Zahid. „Machine Learning-Based Approach for Exploring the Household Survey Data“. In Informal Social Protection and Poverty, 141–200. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6474-9_7.
Der volle Inhalt der QuelleCross, Elizabeth J., S. J. Gibson, M. R. Jones, D. J. Pitchforth, S. Zhang und T. J. Rogers. „Physics-Informed Machine Learning for Structural Health Monitoring“. In Structural Integrity, 347–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81716-9_17.
Der volle Inhalt der QuelleSudarshan, Viswanath P., K. Pavan Kumar Reddy, Mohana Singh, Jayavardhana Gubbi und Arpan Pal. „Uncertainty-Informed Bayesian PET Image Reconstruction Using a Deep Image Prior“. In Machine Learning for Medical Image Reconstruction, 145–55. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17247-2_15.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Machine Learning Informé"
Oneto, Luca, Nicolò Navarin, Alessio Micheli, Luca Pasa, Claudio Gallicchio, Davide Bacciu und Davide Anguita. „Informed Machine Learning for Complex Data“. In ESANN 2024, 1–10. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com, 2024. http://dx.doi.org/10.14428/esann/2024.es2024-1.
Der volle Inhalt der QuelleOneto, Luca, Davide Anguita und Sandro Ridella. „Informed Machine Learning: Excess Risk and Generalization“. In ESANN 2024, 11–16. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com, 2024. http://dx.doi.org/10.14428/esann/2024.es2024-20.
Der volle Inhalt der QuelleFarlessyost, William, und Shweta Singh. „Improving Mechanistic Model Accuracy with Machine Learning Informed Physics“. In Foundations of Computer-Aided Process Design, 275–82. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.121371.
Der volle Inhalt der QuelleZhu, Shijie, Hao Li, Yejie Jiang und Yingjun Deng. „Inner Defect Detection via Physics-Informed Machine Learning“. In 2024 6th International Conference on System Reliability and Safety Engineering (SRSE), 212–16. IEEE, 2024. https://doi.org/10.1109/srse63568.2024.10772527.
Der volle Inhalt der QuelleYu, Yue, Jiageng Tong, Jinhui Xia, Jinya Su und Shihua Li. „PMSM System Identification by Knowledge-informed Machine Learning“. In 2024 IEEE 22nd International Conference on Industrial Informatics (INDIN), 1–6. IEEE, 2024. https://doi.org/10.1109/indin58382.2024.10774223.
Der volle Inhalt der QuelleZhang, Tianren, Yuanbin Wang, Ruizhe Dong, Wenhu Wang, Zhongxue Yang und Mingzhu Zhu. „Informed Machine Learning for Real-time Grinding Force Prediction“. In 2024 30th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/m2vip62491.2024.10746047.
Der volle Inhalt der QuelleSurner, Martin, und Abdelmajid Khelil. „CIML-R: Causally Informed Machine Learning Based on Feature Relevance“. In 2024 11th IEEE Swiss Conference on Data Science (SDS), 68–75. IEEE, 2024. http://dx.doi.org/10.1109/sds60720.2024.00018.
Der volle Inhalt der QuelleFilipovic, Lado, Tobias Reiter, Julius Piso und Roman Kostal. „Equipment-Informed Machine Learning-Assisted Feature-Scale Plasma Etching Model“. In 2024 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/sispad62626.2024.10733099.
Der volle Inhalt der QuelleIto, Rikuto, Yasuhiro Oikawa und Kenji Ishikawa. „Tomographic Reconstruction of Sound Field From Optical Projections Using Physics-Informed Neural Networks“. In 2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/mlsp58920.2024.10734743.
Der volle Inhalt der QuelleWade, Daniel, Hieu Ngo, Frances Love, Jeremy Partain, Andrew Wilson, Matthew Statham und Perumal Shanthakumaran. „Measurement of Vibration Transfer Functions to Inform Machine Learning Based HUMS Diagnostics“. In Vertical Flight Society 72nd Annual Forum & Technology Display, 1–14. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11479.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Machine Learning Informé"
Martinez, Carianne, Jessica Jones, Drew Levin, Nathaniel Trask und Patrick Finley. Physics-Informed Machine Learning for Epidemiological Models. Office of Scientific and Technical Information (OSTI), Oktober 2020. http://dx.doi.org/10.2172/1706217.
Der volle Inhalt der QuelleMcDermott, Jason, Song Feng, Christine Chang, Darren Schmidt und Vincent Danna. Structural- and Functional-Informed Machine Learning for Protein Function Prediction. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1988630.
Der volle Inhalt der QuelleGuthrie, George Drake Jr, und Hari S. Viswanathan. Science-informed Machine Learning to Increase Recovery Efficiency in Unconventional Reservoirs. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1614818.
Der volle Inhalt der QuelleWang, Jianxun, Jinlong Wu, Julia Ling, Gianluca Iaccarino und Heng Xiao. Physics-Informed Machine Learning for Predictive Turbulence Modeling: Towards a Complete Framework. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1562229.
Der volle Inhalt der QuelleBailey Bond, Robert, Pu Ren, James Fong, Hao Sun und Jerome F. Hajjar. Physics-informed Machine Learning Framework for Seismic Fragility Analysis of Steel Structures. Northeastern University, August 2024. http://dx.doi.org/10.17760/d20680141.
Der volle Inhalt der QuelleMueller, Juliane. Machine Learning to Enable Efficient Uncertainty Quantification, Data Assimilation, and Informed Data Acquisition. Office of Scientific and Technical Information (OSTI), März 2021. http://dx.doi.org/10.2172/1769743.
Der volle Inhalt der QuelleAthon, Matthew, Danielle Ciesielski, Jordan Corbey, Shenyang Hu, Ethan King, Yulan Li, Jacqueline Royer, Panagiotis Stinis, Robert Surbella und Scott Swenson. Visualizing Uranium Crystallization from Melt: Experiment-Informed Phase Field Modeling and Machine Learning. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2338176.
Der volle Inhalt der QuelleUllrich, Paul, Tapio Schneider und Da Yang. Physics-Informed Machine Learning from Observations for Clouds, Convection, and Precipitation Parameterizations and Analysis. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769762.
Der volle Inhalt der QuelleGhanshyam, Pilania, Kenneth James McClellan, Christopher Richard Stanek und Blas P. Uberuaga. Physics-Informed Machine Learning for Discovery and Optimization of Materials: A Case Study of Scintillators. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1463529.
Der volle Inhalt der QuelleBao, Jie, Chao Wang, Zhijie Xu und Brian J. Koeppel. Physics-Informed Machine Learning with Application to Solid Oxide Fuel Cell System Modeling and Optimization. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569289.
Der volle Inhalt der Quelle