Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lysosomes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lysosomes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lysosomes"
Nakae, Isei, Tomoko Fujino, Tetsuo Kobayashi, Ayaka Sasaki, Yorifumi Kikko, Masamitsu Fukuyama, Keiko Gengyo-Ando, Shohei Mitani, Kenji Kontani und Toshiaki Katada. „The Arf-like GTPase Arl8 Mediates Delivery of Endocytosed Macromolecules to Lysosomes inCaenorhabditis elegans“. Molecular Biology of the Cell 21, Nr. 14 (15.07.2010): 2434–42. http://dx.doi.org/10.1091/mbc.e09-12-1010.
Der volle Inhalt der QuelleTrivedi, Purvi C., Jordan J. Bartlett und Thomas Pulinilkunnil. „Lysosomal Biology and Function: Modern View of Cellular Debris Bin“. Cells 9, Nr. 5 (04.05.2020): 1131. http://dx.doi.org/10.3390/cells9051131.
Der volle Inhalt der QuelleAmick, Joseph, Arun Kumar Tharkeshwar, Catherine Amaya, und Shawn M. Ferguson. „WDR41 supports lysosomal response to changes in amino acid availability“. Molecular Biology of the Cell 29, Nr. 18 (September 2018): 2213–27. http://dx.doi.org/10.1091/mbc.e17-12-0703.
Der volle Inhalt der QuelleBonet-Ponce, Luis, Alexandra Beilina, Chad D. Williamson, Eric Lindberg, Jillian H. Kluss, Sara Saez-Atienzar, Natalie Landeck et al. „LRRK2 mediates tubulation and vesicle sorting from lysosomes“. Science Advances 6, Nr. 46 (November 2020): eabb2454. http://dx.doi.org/10.1126/sciadv.abb2454.
Der volle Inhalt der QuelleBakker, A. C., P. Webster, W. A. Jacob und N. W. Andrews. „Homotypic fusion between aggregated lysosomes triggered by elevated [Ca2+]i in fibroblasts“. Journal of Cell Science 110, Nr. 18 (15.09.1997): 2227–38. http://dx.doi.org/10.1242/jcs.110.18.2227.
Der volle Inhalt der QuelleXu, Miao, Ke Liu, Manju Swaroop, Wei Sun, Seameen J. Dehdashti, John C. McKew und Wei Zheng. „A Phenotypic Compound Screening Assay for Lysosomal Storage Diseases“. Journal of Biomolecular Screening 19, Nr. 1 (27.08.2013): 168–75. http://dx.doi.org/10.1177/1087057113501197.
Der volle Inhalt der QuelleCuervo, A. M., E. Knecht, S. R. Terlecky und J. F. Dice. „Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation“. American Journal of Physiology-Cell Physiology 269, Nr. 5 (01.11.1995): C1200—C1208. http://dx.doi.org/10.1152/ajpcell.1995.269.5.c1200.
Der volle Inhalt der QuelleLiu, Ji, Wennan Lu, Sonia Guha, Gabriel C. Baltazar, Erin E. Coffey, Alan M. Laties, Ronald C. Rubenstein, William W. Reenstra und Claire H. Mitchell. „Cystic fibrosis transmembrane conductance regulator contributes to reacidification of alkalinized lysosomes in RPE cells“. American Journal of Physiology-Cell Physiology 303, Nr. 2 (15.07.2012): C160—C169. http://dx.doi.org/10.1152/ajpcell.00278.2011.
Der volle Inhalt der QuelleAlquier, C., P. Guenin, Y. Munari-Silem, C. Audebet und B. Rousset. „Isolation of pig thyroid lysosomes. Biochemical and morphological characterization“. Biochemical Journal 232, Nr. 2 (01.12.1985): 529–37. http://dx.doi.org/10.1042/bj2320529.
Der volle Inhalt der QuelleZeng, Wenping, Canjun Li, Ruikun Wu, Xingguo Yang, Qingyan Wang, Bingqian Lin, Yanan Wei et al. „Optogenetic manipulation of lysosomal physiology and autophagy-dependent clearance of amyloid beta“. PLOS Biology 22, Nr. 4 (23.04.2024): e3002591. http://dx.doi.org/10.1371/journal.pbio.3002591.
Der volle Inhalt der QuelleDissertationen zum Thema "Lysosomes"
Ebrahim, Roshan. „Biogenesis of lysosomes in macrophages : intracellular pathway of lysosomal membrane protein to lysosomes“. Doctoral thesis, University of Cape Town, 2008. http://hdl.handle.net/11427/3126.
Der volle Inhalt der QuelleSalgues, Frédéric. „Ciblage des lysosomes pour la thérapie enzymatique substitutive ou pour la thérapie photodynamique“. Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20148.
Der volle Inhalt der QuelleThe cation independent mannose-6-phosphate receptor (CI-M6PR) allows the endocytosis and the transfer of molecules bearing the M6P marker to lysosomes. To improve both the affinity for the CI-M6PR and stability of the M6P residue, we carried out the synthesis of isosteric M6P analogues functionalized at the anomeric position to allow efficient coupling to molecules of therapeutic interest. First, the coupling on human recombinant enzymes was performed. The remodelling of the oligosaccharide part of the lysosomal enzyme GAA, whose deficiency is responsible for Pompe disease, helped to highlight the neoglycoGAA is recognized efficiently by CI-M6PR and its enzymatic activity is completely preserved. Second, the coupling of these analogues of M6P to porphyrins for photodynamic therapy of cancer was considered. The model developed in the mannose series has validated our strategy of ligation of saccharides to photosensitizers. The employed methods avoid the conventional steps of deprotection of saccharides after coupling. The biological study with the prepared glycosylporphyrins demonstrated the photoinduced cytotoxicity
Deng, Yuping. „Studies of intraorganelle dynamics : the lysosome, the pre-lysosomal compartment, and the golgi apparatus /“. Diss., This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-07282008-134815/.
Der volle Inhalt der QuelleBoutry, Maxime. „Dysfonctions des lysosomes et neurodégénérescence : l'exemple de la paraplégie spastique de type SPG11“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066295/document.
Der volle Inhalt der QuelleLysosomal dysfunctions are involved in a large number of neurodegenerative diseases highlightingthe crucial function of lysosomes in neuron survival and function. The mechanism of lysosomereformation from autolysosomes allow cells to maintain the ool of functional lysosomes.Disruptions of this rocess are involved in athologies affecting the central nervous system. Inparticular, spatacsin that lays a role in lysosome recycling is implicated in hereditary spasticparaplegia type SPG11, a severe disease characterized by motors and cognitive alterations. Thispathology is caused by loss of function mutations in SPG11, encoding spatacsin. The study ofSPG11 cellular models gives the opportunity to decipher the hysiopathological mechanismsunderlying lysosomal reformation disruptions.During my thesis, I showed that loss of spatacsin function induces lipid accumulation in lysosomesand articularly in autolysosomes both in fibroblasts and neurons from Spg11-/- mice. Gangliosidesand cholesterol are among lipids that accumulate in autolysosomes impairing lysosomal membranerecycling by disrupting the recruitment of keys roteins. Neurons with ganglioside accumulationsare more sensitive to glutamate induced neuronal death, suggesting that these accumulations areinvolved in neurodegeneration. These results could be of great importance since accumulations ofgangliosides in lysosomes arise in many diseases.I also showed that loss of spatacsin disrupts extracellular calcium import by the store-operatedcalcium entry (SOCE) leading to an increase in cytosolic calcium levels. Lysosomal calcium contentis also increased in Spg11-/- cells and calcium release from lysosome by TRPML1 is reduced.Inhibiting SOCE and stimulating lysosomal calcium release by TRPML1 reduced lipidsaccumulations in lysosomes and artially restored lysosome reformation.Our data suggest that absence of spatacsin is responsible for a disruption of calcium homeostasisthat contributes to lipid accumulation in autolysosomes, disturbing reformation of lysosomes fromautolysosomes. Inhibiting gangliosides synthesis could be used as a therapeutic strategy. However,understanding how loss of function of spatacsin alters these cellular athways will allow thedevelopment of targeted therapeutic approaches
Moule, Christie Joy. „The synthesis and kinetic studies of substrate analogues for N-acetylgalactosamine-4-sulfatase“. Title page, contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phm926.pdf.
Der volle Inhalt der QuellePiccolo, Enzo. „Rôle de la protéine HMGB1 dérivée des macrophages au cours d'une réaction inflammatoire“. Thesis, Toulouse 3, 2021. http://www.theses.fr/2021TOU30035.
Der volle Inhalt der QuelleThe Inflammatory reaction is the first necessary step to combat all pathogens and tissue injuries and restore damaged tissue homeostasis. The immune system is particularly involved during each step, in particular the macrophages which display various inflammatory and metabolic changes. Macrophages can modify and adapt their cellular metabolism to meet their energy needs and efficiently perform the inflammatory reaction according to signals from the surrounding environment. These deep metabolic adaptations influence mitochondria physiology and oxidative phosphorylations (OXPHOS), the secretions of pro and anti-inflammatory molecules, as well as the ability to phagocytize various inflammatory compounds (pathogens, cell debris, and autophagy). These deep metabolic adaptations are under the control of several transcription factors such as NFkB, TFEB or HIF1alpha. The compaction and accessibility of chromatin are crucial for the regulation of the activity of these transcription factors. In the nucleus, DNA compaction is regulated by histones but also by High Mobility Group (HMG) proteins. Among this family of HMG proteins, the High Mobility Group B1 (HMGB1) protein, mainly located in the nucleus, is capable of regulating indirectly the transcription of genes in many tissues. In addition to its nuclear role, HMGB1 can be actively relocated into the cytoplasm and then secreted by innate immune cells during acute or chronic inflammation. Once in the bloodstream, HMGB1 acts as alarmine which initiates and maintains inflammation. Furthermore, during acute or chronic inflammation, concentrations of circulating HMGB1 are increased compared to the basal condition in mice. All these results suggest a role of HMGB1 in the immunometabolism of macrophages as well as in acute or chronic inflammatory processes. In this context, this thesis work has two objectives: I /: To study the role of HMGB1 derived from macrophages and its consequences on the occurrence of tissue fibrosis. II /: To study the intracellular role of HMGB1 derived from macrophages during acute inflammatory shock. This work has demonstrated in vitro and in vivo that, as an alarmine HMGB1 derived from macrophages, does not influence the occurrence of fibrosis following chronic inflammation. Moreover, we demonstrated in vitro and in vivo that as a nuclear factor HMGB1 exerts a potent anti-inflammatory action on macrophages by regulating lysosome biogenesis and function and skewing towards a M2 profile. All these results taken together helped to better characterize and understand the biological functions of HMGB1 proteins during the inflammatory reaction. Boosting these anti-inflammatory functions of HMGB1 may constitute a potential therapeutic approach to counteract the deleterious effect of hyper-inflammation in patients with acute/chronic inflammatory diseases
Kågedal, Katarina. „Cathepsin D released from lysosomes mediates apoptosis /“. Linköping : Univ, 2003. http://www.bibl.liu.se/liupubl/disp/disp2003/med771s.pdf.
Der volle Inhalt der QuelleSelmi, Samia. „Études biochimiques et fonctionnelles des lysosomes thyroïdiens“. Lyon 1, 1989. http://www.theses.fr/1989LYO1T049.
Der volle Inhalt der QuelleJakhria, Toral Chandulal. „Amyloid fibrils are nanoparticles that target lysosomes“. Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/7628/.
Der volle Inhalt der QuelleAtakpa, Peace. „Ca2+ signalling between the endoplasmic reticulum and lysosomes“. Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288002.
Der volle Inhalt der QuelleBücher zum Thema "Lysosomes"
Holtzman, Eric. Lysosomes. New York: Plenum Press, 1989.
Den vollen Inhalt der Quelle findenÖllinger, Karin, und Hanna Appelqvist, Hrsg. Lysosomes. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6934-0.
Der volle Inhalt der QuelleHoltzman, Eric. Lysosomes. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-2540-4.
Der volle Inhalt der QuelleHoltzman, Eric. Lysosomes. New York: Plenum Press, 1989.
Den vollen Inhalt der Quelle findenMehta, Atul B., und Bryan Winchester. Lysosomal storage disorders: A practical guide. Chichester, West Sussex: Wiley-Blackwell, 2013.
Den vollen Inhalt der Quelle findenMaxfield, Frederick R., James M. Willard und Shuyan Lu, Hrsg. Lysosomes: Biology, Diseases, and Therapeutics. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118978320.
Der volle Inhalt der QuelleG, Thoene Jess, Hrsg. Pathophysiology of lysosomal transport. Boca Raton: CRC Press, 1992.
Den vollen Inhalt der Quelle findenReunov, A. V. Liticheskai︠a︡ funkt︠s︡ii︠a︡ kletki. Moskva: Nauka, 2008.
Den vollen Inhalt der Quelle findenLin, Yuxi. Role of Lysosomes in Nonshivering Thermogenesis. [New York, N.Y.?]: [publisher not identified], 2016.
Den vollen Inhalt der Quelle findenH, Glaumann, und Ballard F. J, Hrsg. Lysosomes: Their role in protein breakdown. London: Academic Press, 1987.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Lysosomes"
Holtzman, Eric. „Historical Fragments; Methods; Some Terminology“. In Lysosomes, 1–24. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-2540-4_1.
Der volle Inhalt der QuelleHoltzman, Eric. „Endocytosis and Heterophagy“. In Lysosomes, 25–92. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-2540-4_2.
Der volle Inhalt der QuelleHoltzman, Eric. „Acidification; Membrane Properties; Permeability and Transport“. In Lysosomes, 93–160. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-2540-4_3.
Der volle Inhalt der QuelleHoltzman, Eric. „Uses and Abuses of Endocytotic and Heterophagic Pathways“. In Lysosomes, 161–241. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-2540-4_4.
Der volle Inhalt der QuelleHoltzman, Eric. „Autophagy and Related Phenomena“. In Lysosomes, 243–318. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-2540-4_5.
Der volle Inhalt der QuelleHoltzman, Eric. „Extensive Release. Excessive Storage“. In Lysosomes, 319–61. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-2540-4_6.
Der volle Inhalt der QuelleHoltzman, Eric. „Genesis“. In Lysosomes, 363–418. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-2540-4_7.
Der volle Inhalt der QuelleValk, Jacob, und Marjo S. van der Knaap. „Lysosomes and Lysosomal Disorders“. In Magnetic Resonance of Myelin, Myelination, and Myelin Disorders, 66–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-02568-0_6.
Der volle Inhalt der QuelleWevers, R. A., und V. Gieselmann. „Lysosomes and Lysosomal Disorders“. In Magnetic Resonance of Myelination and Myelin Disorders, 66–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27660-2_5.
Der volle Inhalt der Quellevan der Knaap, Marjo S., und Jacob Valk. „Lysosomes and Lysosomal Disorders“. In Magnetic Resonance of Myelin, Myelination, and Myelin Disorders, 53–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03078-3_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lysosomes"
Giugliano, Giusy, Michela Schiavo, Daniele Pirone, Jaromir Behal, Vittorio Bianco, Sandro Montefusco, Pasquale Memmolo, Lisa Miccio, Pietro Ferraro und Diego L. Medina. „Investigation on lysosomal accumulation by a quantitative analysis of 2D phase-maps in digital holography microscopy“. In Digital Holography and Three-Dimensional Imaging, Th2A.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.th2a.6.
Der volle Inhalt der QuelleZhu, X. „Relationship Between Autophagy-Lysosomes Pathway and Ventilator-Induced Diaphragmatic Dysfunction“. In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a2622.
Der volle Inhalt der QuellePerera, Rushika M. „Abstract I22: New players and unique features of cancer lysosomes“. In Abstracts: AACR Special Conference on Pancreatic Cancer: Advances in Science and Clinical Care; September 6-9, 2019; Boston, MA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.panca19-i22.
Der volle Inhalt der QuelleBakhit, C., D. Lewis, R. Billings und B. Malfroy. „CELLULAR CATABOLISM OF RECOMBINANT TISSUE-TYPE PLASMINOGEN ACTIVATOR: IDENTIFICATION AND CHARACTERIZATION OF A NOVEL HIGH AFFINITY UPTAKE SYSTEM ON RAT HEPATOCYTES“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644400.
Der volle Inhalt der QuelleHung, Hsin-I., Geraldine Quiogue, John J. Lemasters und Anna-Liisa Nieminen. „Signaling from lysosomes to mitochondria sensitizes cancer cells to photodynamic treatment“. In SPIE BiOS, herausgegeben von David H. Kessel und Tayyaba Hasan. SPIE, 2011. http://dx.doi.org/10.1117/12.878306.
Der volle Inhalt der QuelleQuiogue, Geraldine, Shalini Saggu, Hsin-I. Hung, Malcolm E. Kenney, Nancy L. Oleinick, John J. Lemasters und Anna-Liisa Nieminen. „Signaling from lysosomes enhances mitochondria-mediated photodynamic therapy in cancer cells“. In 12th World Congress of the International Photodynamic Association, herausgegeben von David H. Kessel. SPIE, 2009. http://dx.doi.org/10.1117/12.823752.
Der volle Inhalt der QuelleJoncour, Vadim Le, Pauliina Filppu, Minna Holopainen, Maija Hyvönen, S. Pauliina Turunen, Harri Sihto, Isabel Burghardt et al. „Abstract LB-055: Novel therapeutic option targeting the tumor cell lysosomes“. In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-lb-055.
Der volle Inhalt der QuelleTang, Hao-yang, Meng Qian, Cong Song und Yi-chao Zhang. „Lysosomes Computational Labeling Method Based on Feature Map Slice of Deeplabv3+“. In 2019 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2019. http://dx.doi.org/10.1109/ssci44817.2019.9002802.
Der volle Inhalt der QuelleNieminen, Anna-Liisa, Kashif Azizuddin, Ping Zhang, Malcolm E. Kenney, Peter Pediaditakis, John J. Lemasters und Nancy L. Oleinick. „Contribution of mitochondria and lysosomes to photodynamic therapy-induced death in cancer cells“. In Biomedical Optics (BiOS) 2008, herausgegeben von David Kessel. SPIE, 2008. http://dx.doi.org/10.1117/12.767356.
Der volle Inhalt der QuelleMetelitsina, Irina P., und N. F. Leus. „Action of low-energy monochromatic coherent light on the stability of retinal lysosomes“. In Photonics West '95, herausgegeben von Steven L. Jacques. SPIE, 1995. http://dx.doi.org/10.1117/12.209925.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Lysosomes"
Levenson, Victor V. Lysosome-mediated Cell Death and Autophagy-Dependent Multidrug Resistance in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2008. http://dx.doi.org/10.21236/ada495800.
Der volle Inhalt der QuelleShiio, Yuzuru. Targeting Androgen Receptor by Lysosomal Degradation in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada612607.
Der volle Inhalt der QuelleShiio, Yuzuru. Targeting Androgen Receptor by Lysosomal Degradation in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, November 2015. http://dx.doi.org/10.21236/ada621824.
Der volle Inhalt der QuellePalmer, Guy, Varda Shkap, Wendy Brown und Thea Molad. Control of bovine anaplasmosis: cytokine enhancement of vaccine efficacy. United States Department of Agriculture, März 2007. http://dx.doi.org/10.32747/2007.7695879.bard.
Der volle Inhalt der Quelle