Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Lyoprotectants“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lyoprotectants" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Lyoprotectants"
Li, Li, Xu Yan Zong, Li Xiong, Jing Zhang und Kai Chen. „Optimization of Protection Condition for Composite Freeze-Dried Starter of Paocai“. Advanced Materials Research 798-799 (September 2013): 1087–90. http://dx.doi.org/10.4028/www.scientific.net/amr.798-799.1087.
Der volle Inhalt der QuelleWoo, Joshua, und Jeoung Soo Lee. „Effects of lyoprotectants on long-term stability and transfection efficacy of lyophilized poly(lactide-co-glycolide)-graft-polyethylenimine/plasmid DNA polyplexes“. Nanomedicine 16, Nr. 15 (Juni 2021): 1269–80. http://dx.doi.org/10.2217/nnm-2021-0065.
Der volle Inhalt der QuelleSongyang, Lin, Kang Qiaozhen, Pan Dan, Liu Xin, Lu Laizheng, Hao Limin und Lu Jike. „Identification of Lyoprotectants Released from Gradient-freezing Pretreated Entocyte in Lactococcus Lactis Subsp. Lactis IL1403“. Current Topics in Nutraceutical Research 17, Nr. 2 (29.07.2017): 122–34. http://dx.doi.org/10.37290/ctnr2641-452x.17:122-134.
Der volle Inhalt der QuelleMacFarlane, D. R., J. Pringle und G. Annat. „Reversible self-polymerizing high Tg lyoprotectants“. Cryobiology 45, Nr. 2 (Oktober 2002): 188–92. http://dx.doi.org/10.1016/s0011-2240(02)00127-x.
Der volle Inhalt der QuelleQi, Kangru, He Chen, Hongchang Wan, Man Hu und Yuxi Wu. „Response Surface Optimization of Lyoprotectant from Amino Acids and Salts for Bifidobacterium Bifidum During Vacuum Freeze-Drying“. Acta Universitatis Cibiniensis. Series E: Food Technology 21, Nr. 2 (01.12.2017): 3–10. http://dx.doi.org/10.1515/aucft-2017-0009.
Der volle Inhalt der QuelleKelly, Jessica M., Elizabeth E. Pearce, Douglas R. Martin und Mark E. Byrne. „Lyoprotectants modify and stabilize self-assembly of polymersomes“. Polymer 87 (März 2016): 316–22. http://dx.doi.org/10.1016/j.polymer.2016.02.007.
Der volle Inhalt der QuelleHariyadi, Dewi Melani, Tutiek Purwanti und Destia Wardani. „Stability of Freeze-Dried Ovalbumin-Alginate Microspheres with Different Lyoprotectants“. Research Journal of Pharmacy and Technology 9, Nr. 1 (2016): 20. http://dx.doi.org/10.5958/0974-360x.2016.00005.6.
Der volle Inhalt der QuelleYun, Gyiae, Iqra Haleem, Hyeongmin Kim, Saemi Yoon, Ki‐Hwan Park und Jaehwi Lee. „Redispersible Freeze‐dried Quercetin‐loaded Liposomal Formulations Stabilized with Lyoprotectants“. Bulletin of the Korean Chemical Society 40, Nr. 6 (Juni 2019): 594–97. http://dx.doi.org/10.1002/bkcs.11717.
Der volle Inhalt der QuelleDebulis, Katherine, und Alexander M. Klibanov. „Dramatic enhancement of enzymatic activity in organic solvents by lyoprotectants“. Biotechnology and Bioengineering 41, Nr. 5 (05.03.1993): 566–71. http://dx.doi.org/10.1002/bit.260410509.
Der volle Inhalt der QuelleD'Andrea, G., M. L. Salucci und L. Avigliano. „Effect of lyoprotectants on ascorbate oxidase activity after freeze-drying and storage“. Process Biochemistry 31, Nr. 2 (Januar 1996): 173–78. http://dx.doi.org/10.1016/0032-9592(95)00045-3.
Der volle Inhalt der QuelleDissertationen zum Thema "Lyoprotectants"
Wilding, Kristen Michelle. „Engineering Cell-Free Biosystems for On-Site Production and Rapid Design of Next-Generation Therapeutics“. BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7713.
Der volle Inhalt der QuelleŠvehlíková, Ingrid. „Lyofilizace polymerních nanomateriálů“. Master's thesis, 2021. http://www.nusl.cz/ntk/nusl-445933.
Der volle Inhalt der QuelleTseng, Tzu-Yun, und 曾子芸. „Studies of fermentation conditions and lyoprotectant for Lactobacillus paracasei subsp. paracasei NTU 101“. Thesis, 2018. http://ndltd.ncl.edu.tw/handle/bfke4j.
Der volle Inhalt der Quelle國立臺東大學
生命科學系碩士班
106
Lactobacillus paracasei subsp. paracasei NTU 101 (NTU 101) is a health food material with a variety of effects. However, no studies have been made on fermentation and adding freeze-drying lyoprotectants effect of subsequent storage stability. In this study In this study, the effect of oxygen level or different pH value on the growth kinetics of NTU 101 was investigated in a 2.0 L fermentor. The results showed that culture the NTU 101 with N2 gas using an orifice sparger had the highest cell density ((2.36 ± 0.21)x109 CFU/mL) and specific productivity ((1.97 ± 0.18)x108 CFU/mL/h). However, the highest specific growth rate (0.61 h-1, p < 0.05) was achieved under the control of pH 6.0. The fermentation time was shortened to 9 hours (0.5625 times decrease), 10% (w/v) soybean milk powder as an alternative medium after under the same conditions culturing NTU 101, the unit cost increased 1.53 times comparing to pH 6.0 group, which effectively reduced the production cost. In the other study, the long-term stored in room temperature after 12 months, the result showed that count of NTU 101 freeze-drying powder down to 106 CFU/g, that was not conducive to product sales. Therefore, the effect of adding lyoprotectants on the storage stability of freeze-drying powder was further investigated. The results showed that viable cells numbers of 10% skim milk, 10% trehalose and 10% lactose was (9.34 ± 4.43)x106, (1.57 ± 1.16)x106 and (2.18 ± 0.31)x107 CFU/g DCW, compared with control (no protective agent) increased 31.04, 6.16 and 65.52 times survival rate, respectively. It is conducive to apply on the subsequent manufacturing process. Using RT-qPCR analyzed the effect of oxidative stress, pH value, cold, heat and osmotic stress for NTU 101 stress gene expression. The results showed that culture with N2 gas decreased the expression of DnaJ, DnaK, sHsp and GroES, then controlling the optimal pH would further reduce the expression of DnaJ, DnaK and GroES, indicating the growth restriction of NTU 101 is related to the expression of these three genes. Under aerobic, higher or lower pH conditions expressed Csp, DnaJ, DnaK, sHsp, and GroES are all involved in the protein folding repair mechanism, protein misfolding caused by environmental stress may be the main limiting factor for the growth of NTU101 in this study. In future, it could use of these gene expression as an indicator of NTU 101 physiological status and further explores the relevance of stress treatment to survival.
Vuová, Ngoc Lien. „Formulace lyofilizovaných tablet pro bukální aplikaci vakcín“. Master's thesis, 2021. http://www.nusl.cz/ntk/nusl-449105.
Der volle Inhalt der QuelleMacáková, Eliška. „Formulace lyofilizovaných tablet pro orální aplikaci peptidů“. Master's thesis, 2020. http://www.nusl.cz/ntk/nusl-411612.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Lyoprotectants"
Azoddein, Abdul Aziz Mohd, Yana Nuratri, Faten Ahada Mohd Azli und Ahmad Bazli Bustary. „Assessing storage of stability and mercury reduction of freeze-dried Pseudomonas putida within different types of lyoprotectant“. In ADVANCED MATERIALS FOR SUSTAINABILITY AND GROWTH: Proceedings of the 3rd Advanced Materials Conference 2016 (3rd AMC 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.5010534.
Der volle Inhalt der Quelle