Zeitschriftenartikel zum Thema „Lungs Inflammation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Lungs Inflammation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Kumar, Rajiv. „SARS-CoV-2, Inflammation, Allergy of the Lungs and Nanotherapeutics“. International Journal of Clinical Case Reports and Reviews 11, Nr. 1 (04.04.2022): 01–02. http://dx.doi.org/10.31579/2690-4861/208.
Der volle Inhalt der QuelleLe, Nguyen Phuong Khanh, Shankaramurthy Channabasappa, Mokarram Hossain, Lixin Liu und Baljit Singh. „Leukocyte-specific protein 1 regulates neutrophil recruitment in acute lung inflammation“. American Journal of Physiology-Lung Cellular and Molecular Physiology 309, Nr. 9 (01.11.2015): L995—L1008. http://dx.doi.org/10.1152/ajplung.00068.2014.
Der volle Inhalt der QuelleLorenzo, Erica, Jacob Hopkins, Julie Lefebvre und Laura Haynes. „Vaccination does not protect aged mice from influenza-induced lung inflammation (VAC9P.1062)“. Journal of Immunology 194, Nr. 1_Supplement (01.05.2015): 145.2. http://dx.doi.org/10.4049/jimmunol.194.supp.145.2.
Der volle Inhalt der QuelleSmall, Donna M., Ryan R. Brown, Declan F. Doherty, Anthony Abladey, Zhe Zhou-Suckow, Rebecca J. Delaney, Lauren Kerrigan et al. „Targeting of cathepsin S reduces cystic fibrosis-like lung disease“. European Respiratory Journal 53, Nr. 3 (17.01.2019): 1801523. http://dx.doi.org/10.1183/13993003.01523-2018.
Der volle Inhalt der QuelleRamos-Ramírez, Patricia, Carina Malmhäll, Kristina Johansson, Mikael Adner, Jan Lötvall und Apostolos Bossios. „Lung Regulatory T Cells Express Adiponectin Receptor 1: Modulation by Obesity and Airway Allergic Inflammation“. International Journal of Molecular Sciences 21, Nr. 23 (26.11.2020): 8990. http://dx.doi.org/10.3390/ijms21238990.
Der volle Inhalt der QuelleChapoval, Svetlana P., Ann E. Kelly-Welch, Elizabeth Smith und Achsah D. Keegan. „Complex role of STAT6 in allergic airway inflammation (39.11)“. Journal of Immunology 178, Nr. 1_Supplement (01.04.2007): S27. http://dx.doi.org/10.4049/jimmunol.178.supp.39.11.
Der volle Inhalt der QuelleHerbein, Joel F., und Jo Rae Wright. „Enhanced clearance of surfactant protein D during LPS-induced acute inflammation in rat lung“. American Journal of Physiology-Lung Cellular and Molecular Physiology 281, Nr. 1 (01.07.2001): L268—L277. http://dx.doi.org/10.1152/ajplung.2001.281.1.l268.
Der volle Inhalt der QuelleAhn, So Yoon, Dong Kyung Sung, Yun Sil Chang und Won Soon Park. „Intratracheal Transplantation of Mesenchymal Stem Cells Attenuates Hyperoxia-Induced Microbial Dysbiosis in the Lungs, Brain, and Gut in Newborn Rats“. International Journal of Molecular Sciences 23, Nr. 12 (13.06.2022): 6601. http://dx.doi.org/10.3390/ijms23126601.
Der volle Inhalt der QuelleMarín-Corral, Judith, Leticia Martínez-Caro, José A. Lorente, Marta de Paula, Lara Pijuan, Nicolas Nin, Joaquim Gea, Andrés Esteban und Esther Barreiro. „Redox Balance and Cellular Inflammation in the Diaphragm, Limb Muscles, and Lungs of Mechanically Ventilated Rats“. Anesthesiology 112, Nr. 2 (01.02.2010): 384–94. http://dx.doi.org/10.1097/aln.0b013e3181c38bed.
Der volle Inhalt der QuelleBai, Jing, Shi-Lin Qiu, Xiao-Ning Zhong, Qiu-Ping Huang, Zhi-Yi He, Jian-Quan Zhang, Guang-Nan Liu, Mei-Hua Li und Jing-Min Deng. „Erythromycin EnhancesCD4+Foxp3+Regulatory T-Cell Responses in a Rat Model of Smoke-Induced Lung Inflammation“. Mediators of Inflammation 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/410232.
Der volle Inhalt der QuelleMarkovic, N., L. A. McCaig, J. Stephen, S. Mizuguchi, R. A. W. Veldhuizen, J. F. Lewis und G. Cepinskas. „Mediators released from LPS-challenged lungs induce inflammatory responses in liver vascular endothelial cells and neutrophilic leukocytes“. American Journal of Physiology-Gastrointestinal and Liver Physiology 297, Nr. 6 (Dezember 2009): G1066—G1076. http://dx.doi.org/10.1152/ajpgi.00278.2009.
Der volle Inhalt der Quellede Prost, Nicolas, Eduardo L. Costa, Tyler Wellman, Guido Musch, Tilo Winkler, Mauro R. Tucci, R. Scott Harris, Jose G. Venegas und Marcos F. Vidal Melo. „Effects of surfactant depletion on regional pulmonary metabolic activity during mechanical ventilation“. Journal of Applied Physiology 111, Nr. 5 (November 2011): 1249–58. http://dx.doi.org/10.1152/japplphysiol.00311.2011.
Der volle Inhalt der QuelleGoenharto, Sianiwati, I. Ketut Sudiana, Sherman Salim, Elly Rusdiana und Sri Wahjuni. „Inflammation in the lungs of mice due to methyl methacrylate exposure“. February-2020 13, Nr. 2 (2020): 256–60. http://dx.doi.org/10.14202/vetworld.2020.256-260.
Der volle Inhalt der QuelleVrolyk, V., B. K. Wobeser, A. N. Al-Dissi, A. Carr und B. Singh. „Lung Inflammation Associated With Clinical Acute Necrotizing Pancreatitis in Dogs“. Veterinary Pathology 54, Nr. 1 (30.09.2016): 129–40. http://dx.doi.org/10.1177/0300985816646432.
Der volle Inhalt der QuelleBabić, Rade, Gordana Stanković-Babić, Strahinja Babić, Aleksandra Marjanović, Nenad Govedarović und Nevena Babić. „X-ray aspects of lung inflammation COVID-19“. Medicinska rec 1, Nr. 3 (2020): 127–35. http://dx.doi.org/10.5937/medrec2003127b.
Der volle Inhalt der QuelleSadykova, Gulora A., Kh U. Rakhmatullaev, R. Sh Mavlyan-Khodjaev, Z. S. Zalyalova und Yu Kh Tadjikhodjaeva. „THE INFLUENCE OF OZONE THERAPY ON THE MORPHOLOGIC CHANGES IN THE PATIENTS PRESENTING WITH PURULENT INFLAMMATION OF THE LUNGS IN THE EXPERIMENT“. Russian Journal of Physiotherapy, Balneology and Rehabilitation 16, Nr. 3 (15.06.2017): 137–40. http://dx.doi.org/10.18821/1681-3456-2017-16-3-137-140.
Der volle Inhalt der QuelleLocke, Landon W., Mark B. Williams, Karen D. Fairchild, Min Zhong, Bijoy K. Kundu und Stuart S. Berr. „FDG-PET Quantification of Lung Inflammation with Image-Derived Blood Input Function in Mice“. International Journal of Molecular Imaging 2011 (10.12.2011): 1–6. http://dx.doi.org/10.1155/2011/356730.
Der volle Inhalt der QuelleSavin, Innokenty A., Marina A. Zenkova und Aleksandra V. Sen’kova. „Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches“. International Journal of Molecular Sciences 23, Nr. 23 (29.11.2022): 14959. http://dx.doi.org/10.3390/ijms232314959.
Der volle Inhalt der QuelleWilson, Carole L., Chi F. Hung und Lynn M. Schnapp. „Endotoxin-induced acute lung injury in mice with postnatal deletion of nephronectin“. PLOS ONE 17, Nr. 5 (12.05.2022): e0268398. http://dx.doi.org/10.1371/journal.pone.0268398.
Der volle Inhalt der QuelleThatcher, T. H., N. A. McHugh, R. W. Egan, R. W. Chapman, J. A. Hey, C. K. Turner, M. R. Redonnet, K. E. Seweryniak, P. J. Sime und R. P. Phipps. „Role of CXCR2 in cigarette smoke-induced lung inflammation“. American Journal of Physiology-Lung Cellular and Molecular Physiology 289, Nr. 2 (August 2005): L322—L328. http://dx.doi.org/10.1152/ajplung.00039.2005.
Der volle Inhalt der QuelleCohen, Pazit Y., Raphael Breuer, Philip Zisman und Shulamit B. Wallach-Dayan. „Bleomycin-Treated Chimeric Thy1-Deficient Mice with Thy1-Deficient Myofibroblasts and Thy-Positive Lymphocytes Resolve Inflammation without Affecting the Fibrotic Response“. Mediators of Inflammation 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/942179.
Der volle Inhalt der QuelleFales-Williams, A. J., K. A. Brogden, E. Huffman, J. M. Gallup und M. R. Ackermann. „Cellular Distribution of Anionic Antimicrobial Peptide in Normal Lung and during Acute Pulmonary Inflammation“. Veterinary Pathology 39, Nr. 6 (November 2002): 706–11. http://dx.doi.org/10.1354/vp.39-6-706.
Der volle Inhalt der QuelleLéger, Caroline, Ai Ni, Graciela Andonegui, Josée Wong, Connie Mowat und Brent W. Winston. „Adenovirus-mediated gene transfer of hIGF-IB in mouse lungs induced prolonged inflammation but no fibroproliferation“. American Journal of Physiology-Lung Cellular and Molecular Physiology 298, Nr. 4 (April 2010): L492—L500. http://dx.doi.org/10.1152/ajplung.00310.2009.
Der volle Inhalt der QuelleDuong, Chi, Huei Jiunn Seow, Steven Bozinovski, Peter J. Crack, Gary P. Anderson und Ross Vlahos. „Glutathione peroxidase-1 protects against cigarette smoke-induced lung inflammation in mice“. American Journal of Physiology-Lung Cellular and Molecular Physiology 299, Nr. 3 (September 2010): L425—L433. http://dx.doi.org/10.1152/ajplung.00038.2010.
Der volle Inhalt der QuelleLagasse, H. A. Daniel, und Alan Scott. „Lung macrophages control malaria-induced pulmonary inflammation (56.17)“. Journal of Immunology 186, Nr. 1_Supplement (01.04.2011): 56.17. http://dx.doi.org/10.4049/jimmunol.186.supp.56.17.
Der volle Inhalt der QuelleWang, Ping, Lin Zhang, Yanxia Liao, Juan Du, Mengying Xu, Wen Zhao, Shuxian Yin et al. „Effect of Intratracheal Instillation of ZnO Nanoparticles on Acute Lung Inflammation Induced by Lipopolysaccharides in Mice“. Toxicological Sciences 173, Nr. 2 (05.12.2019): 373–86. http://dx.doi.org/10.1093/toxsci/kfz234.
Der volle Inhalt der QuelleHogmalm, Anna, Maija Bry und Kristina Bry. „Pulmonary IL-1β expression in early life causes permanent changes in lung structure and function in adulthood“. American Journal of Physiology-Lung Cellular and Molecular Physiology 314, Nr. 6 (01.06.2018): L936—L945. http://dx.doi.org/10.1152/ajplung.00256.2017.
Der volle Inhalt der QuelleHellman, Urban, Mats G. Karlsson, Anna Engström-Laurent, Sara Cajander, Luiza Dorofte, Clas Ahlm, Claude Laurent und Anders Blomberg. „Presence of hyaluronan in lung alveoli in severe Covid-19: An opening for new treatment options?“ Journal of Biological Chemistry 295, Nr. 45 (25.09.2020): 15418–22. http://dx.doi.org/10.1074/jbc.ac120.015967.
Der volle Inhalt der QuelleKunzmann, Steffen, Christian P. Speer, Alan H. Jobe und Boris W. Kramer. „Antenatal inflammation induced TGF-β1 but suppressed CTGF in preterm lungs“. American Journal of Physiology-Lung Cellular and Molecular Physiology 292, Nr. 1 (Januar 2007): L223—L231. http://dx.doi.org/10.1152/ajplung.00159.2006.
Der volle Inhalt der QuelleZhang, Xinfu, Weiyu Zhao, Bin Li, Wenqing Li, Chengxiang Zhang, Xucheng Hou, Justin Jiang und Yizhou Dong. „Ratiometric fluorescent probes for capturing endogenous hypochlorous acid in the lungs of mice“. Chemical Science 9, Nr. 43 (2018): 8207–12. http://dx.doi.org/10.1039/c8sc03226b.
Der volle Inhalt der QuellePapinska, Joanna Aleksandra, Grzegorz Gmyrek, R. Sathish Srinivasan, Umesh Deshmukh und Harini Bagavant. „Pulmonary involvement in a mouse model of Sjögren’s syndrome induced by activation of the STING pathway“. Journal of Immunology 202, Nr. 1_Supplement (01.05.2019): 180.16. http://dx.doi.org/10.4049/jimmunol.202.supp.180.16.
Der volle Inhalt der QuelleSingh, Ram Raj, und Isela Valera. „Plasmacytoid dendritic cells contribute to pro-inflammatory and pro-fibrotic milieu in lung fibrosis“. Journal of Immunology 202, Nr. 1_Supplement (01.05.2019): 182.76. http://dx.doi.org/10.4049/jimmunol.202.supp.182.76.
Der volle Inhalt der QuelleLibreros, Stephania, Ramon Garcia-Areas und Vijaya Iragavarapu. „Chitinase-3 like-protein-1 (CHI3L1) expression associated with pulmonary inflammation accelerates breast cancer metastasis (TUM7P.960)“. Journal of Immunology 192, Nr. 1_Supplement (01.05.2014): 203.42. http://dx.doi.org/10.4049/jimmunol.192.supp.203.42.
Der volle Inhalt der QuelleHardwick, Matthew J., Ming-Kai Chen, Kwamena Baidoo, Martin G. Pomper und Tomás R. Guilarte. „In Vivo Imaging of Peripheral Benzodiazepine Receptors in Mouse Lungs: A Biomarker of Inflammation“. Molecular Imaging 4, Nr. 4 (01.10.2005): 7290.2005.05133. http://dx.doi.org/10.2310/7290.2005.05133.
Der volle Inhalt der QuelleTjota, Melissa, und Anne Sperling. „Activation of monocytes through FcRγ-signaling promotes IL-33-dependent migration into the lung interstitium (HYP7P.270)“. Journal of Immunology 194, Nr. 1_Supplement (01.05.2015): 191.18. http://dx.doi.org/10.4049/jimmunol.194.supp.191.18.
Der volle Inhalt der QuelleVakhidova, A. M. „EFFICACY OF LYMPHOTROPIC ADMINISTRATION OF BACTOX (AMOXICILIN) IN THE TREATMENT OF CHRONIC PNEUMONIA IN CHILDREN“. American Journal of Medical Sciences and Pharmaceutical Research 04, Nr. 02 (01.02.2022): 4–6. http://dx.doi.org/10.37547/tajmspr/volume04issue02-02.
Der volle Inhalt der QuelleWoods, David F., Stephanie Flynn, Jose A. Caparrós-Martín, Stephen M. Stick, F. Jerry Reen und Fergal O’Gara. „Systems Biology and Bile Acid Signalling in Microbiome-Host Interactions in the Cystic Fibrosis Lung“. Antibiotics 10, Nr. 7 (24.06.2021): 766. http://dx.doi.org/10.3390/antibiotics10070766.
Der volle Inhalt der QuelleMaehara, Toko, und Ko Fujimori. „Inhibition of Prostaglandin F2α Receptors Exaggerates HCl-Induced Lung Inflammation in Mice“. International Journal of Molecular Sciences 22, Nr. 23 (27.11.2021): 12843. http://dx.doi.org/10.3390/ijms222312843.
Der volle Inhalt der QuelleBajrami, Besnik, Haiyan Zhu, Hyun-Jeong Kwak, Subhanjan Mondal, Qingming Hou, Guangfeng Geng, Kutay Karatepe et al. „G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling“. Journal of Experimental Medicine 213, Nr. 10 (22.08.2016): 1999–2018. http://dx.doi.org/10.1084/jem.20160393.
Der volle Inhalt der QuelleAbonia, J. Pablo, Jenny Hallgren, Tatiana Jones, Tong Shi, Yuhui Xu, Pandelakis Koni, Richard A. Flavell, Joshua A. Boyce, K. Frank Austen und Michael F. Gurish. „Alpha-4 integrins and VCAM-1, but not MAdCAM-1, are essential for recruitment of mast cell progenitors to the inflamed lung“. Blood 108, Nr. 5 (01.09.2006): 1588–94. http://dx.doi.org/10.1182/blood-2005-12-012781.
Der volle Inhalt der QuelleHart, David A., Francis Green, Paul Whidden, Jack Henkin und Donald E. Woods. „Exogenous rh-urokinase modifies inflammation and Pseudomonas aeruginosa infection in a rat chronic pulmonary infection model“. Canadian Journal of Microbiology 39, Nr. 12 (01.12.1993): 1127–34. http://dx.doi.org/10.1139/m93-170.
Der volle Inhalt der QuelleWang, Qin, Jianchun Wang, Mingdong Hu, Yu Yang, Liang Guo, Jing Xu, Chuanjiang Lei, Yan Jiao und JianCheng Xu. „Uncoupling Protein 2 Increases Susceptibility to Lipopolysaccharide-Induced Acute Lung Injury in Mice“. Mediators of Inflammation 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/9154230.
Der volle Inhalt der QuelleWong, Aaron, Ricardo Zamel, Jonathan Yeung, Gary D. Bader, Claudia C. Dos Santos, Xiaohui Bai, Yubo Wang, Shaf Keshavjee und Mingyao Liu. „Potential therapeutic targets for lung repair during human ex vivo lung perfusion“. European Respiratory Journal 55, Nr. 4 (14.02.2020): 1902222. http://dx.doi.org/10.1183/13993003.02222-2019.
Der volle Inhalt der QuelleLopez, A., und R. Bildfell. „Pulmonary Inflammation Associated with Aspirated Meconium and Epithelial Cells in Calves“. Veterinary Pathology 29, Nr. 2 (März 1992): 104–11. http://dx.doi.org/10.1177/030098589202900202.
Der volle Inhalt der QuelleYuan, Zhihong, Mansoor Syed, Dipti Panchal, Myungsoo Joo, Chetna Bedi, Sokbee Lim, Hayat Onyuksel, Israel Rubinstein, Marco Colonna und Ruxana T. Sadikot. „TREM-1-accentuated lung injury via miR-155 is inhibited by LP17 nanomedicine“. American Journal of Physiology-Lung Cellular and Molecular Physiology 310, Nr. 5 (01.03.2016): L426—L438. http://dx.doi.org/10.1152/ajplung.00195.2015.
Der volle Inhalt der QuelleNair, Meera. „The macrophage-derived proteins murine RELMα and human resistin regulate host immunity to helminth infection (MPF3P.801)“. Journal of Immunology 192, Nr. 1_Supplement (01.05.2014): 132.1. http://dx.doi.org/10.4049/jimmunol.192.supp.132.1.
Der volle Inhalt der QuelleKim, Tae Ho, Jun-Yong Choi, Kyun Ha Kim, Min Jung Kwun, Chang-Woo Han, Ran Won, Jung Ju Lee, Jong-In Kim und Myungsoo Joo. „Hominis placenta Suppresses Acute Lung Inflammation by Activating Nrf2“. American Journal of Chinese Medicine 46, Nr. 04 (Januar 2018): 801–17. http://dx.doi.org/10.1142/s0192415x18500428.
Der volle Inhalt der QuellePreuss, Jonathan M., Ute Burret, Michael Gröger, Sandra Kress, Angelika Scheuerle, Peter Möller, Jan P. Tuckermann, Martin Wepler und Sabine Vettorazzi. „Impaired Glucocorticoid Receptor Signaling Aggravates Lung Injury after Hemorrhagic Shock“. Cells 11, Nr. 1 (30.12.2021): 112. http://dx.doi.org/10.3390/cells11010112.
Der volle Inhalt der QuelleLin, Hung-Jung, Chia-Ti Wang, Ko-Chi Niu, Chungjin Gao, Zhuo Li, Mao-Tsun Lin und Ching-Ping Chang. „Hypobaric hypoxia preconditioning attenuates acute lung injury during high-altitude exposure in rats via up-regulating heat-shock protein 70“. Clinical Science 121, Nr. 5 (20.05.2011): 223–31. http://dx.doi.org/10.1042/cs20100596.
Der volle Inhalt der QuelleLagishetty, Venu, Prasanna Tamarapu Parthasarathy, Oluwakemi Phillips, Jutaro Fukumoto, Young Cho, Itsuko Fukumoto, Huynh Bao et al. „Dysregulation of CLOCK gene expression in hyperoxia-induced lung injury“. American Journal of Physiology-Cell Physiology 306, Nr. 11 (01.06.2014): C999—C1007. http://dx.doi.org/10.1152/ajpcell.00064.2013.
Der volle Inhalt der Quelle