Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „LSTM unit“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "LSTM unit" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "LSTM unit"
Dangovski, Rumen, Li Jing, Preslav Nakov, Mićo Tatalović und Marin Soljačić. „Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications“. Transactions of the Association for Computational Linguistics 7 (November 2019): 121–38. http://dx.doi.org/10.1162/tacl_a_00258.
Der volle Inhalt der QuelleHan, Shipeng, Zhen Meng, Xingcheng Zhang und Yuepeng Yan. „Hybrid Deep Recurrent Neural Networks for Noise Reduction of MEMS-IMU with Static and Dynamic Conditions“. Micromachines 12, Nr. 2 (20.02.2021): 214. http://dx.doi.org/10.3390/mi12020214.
Der volle Inhalt der QuelleHuang, Zhongzhan, Senwei Liang, Mingfu Liang und Haizhao Yang. „DIANet: Dense-and-Implicit Attention Network“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 04 (03.04.2020): 4206–14. http://dx.doi.org/10.1609/aaai.v34i04.5842.
Der volle Inhalt der QuelleWang, Jianyong, Lei Zhang, Yuanyuan Chen und Zhang Yi. „A New Delay Connection for Long Short-Term Memory Networks“. International Journal of Neural Systems 28, Nr. 06 (24.06.2018): 1750061. http://dx.doi.org/10.1142/s0129065717500617.
Der volle Inhalt der QuelleHe, Wei, Jufeng Li, Zhihe Tang, Beng Wu, Hui Luan, Chong Chen und Huaqing Liang. „A Novel Hybrid CNN-LSTM Scheme for Nitrogen Oxide Emission Prediction in FCC Unit“. Mathematical Problems in Engineering 2020 (17.08.2020): 1–12. http://dx.doi.org/10.1155/2020/8071810.
Der volle Inhalt der QuelleDonoso-Oliva, C., G. Cabrera-Vives, P. Protopapas, R. Carrasco-Davis und P. A. Estevez. „The effect of phased recurrent units in the classification of multiple catalogues of astronomical light curves“. Monthly Notices of the Royal Astronomical Society 505, Nr. 4 (10.06.2021): 6069–84. http://dx.doi.org/10.1093/mnras/stab1598.
Der volle Inhalt der QuellePan, Yu, Jing Xu, Maolin Wang, Jinmian Ye, Fei Wang, Kun Bai und Zenglin Xu. „Compressing Recurrent Neural Networks with Tensor Ring for Action Recognition“. Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 4683–90. http://dx.doi.org/10.1609/aaai.v33i01.33014683.
Der volle Inhalt der QuelleShafqat, Wafa, und Yung-Cheol Byun. „A Context-Aware Location Recommendation System for Tourists Using Hierarchical LSTM Model“. Sustainability 12, Nr. 10 (18.05.2020): 4107. http://dx.doi.org/10.3390/su12104107.
Der volle Inhalt der QuelleWu, Beng, Wei He, Jing Wang, Huaqing Liang und Chong Chen. „A convolutional-LSTM model for nitrogen oxide emission forecasting in FCC unit“. Journal of Intelligent & Fuzzy Systems 40, Nr. 1 (04.01.2021): 1537–45. http://dx.doi.org/10.3233/jifs-192086.
Der volle Inhalt der QuelleAppati, Justice Kwame, Ismail Wafaa Denwar, Ebenezer Owusu und Michael Agbo Tettey Soli. „Construction of an Ensemble Scheme for Stock Price Prediction Using Deep Learning Techniques“. International Journal of Intelligent Information Technologies 17, Nr. 2 (April 2021): 72–95. http://dx.doi.org/10.4018/ijiit.2021040104.
Der volle Inhalt der QuelleDissertationen zum Thema "LSTM unit"
Sarika, Pawan Kumar. „Comparing LSTM and GRU for Multiclass Sentiment Analysis of Movie Reviews“. Thesis, Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20213.
Der volle Inhalt der QuelleImramovská, Klára. „Detekce komorových extrasystol v EKG“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442489.
Der volle Inhalt der QuelleMealey, Thomas C. „Binary Recurrent Unit: Using FPGA Hardware to Accelerate Inference in Long Short-Term Memory Neural Networks“. University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1524402925375566.
Der volle Inhalt der QuelleRadhakrishnan, Saieshwar. „Domain Adaptation of IMU sensors using Generative Adversarial Networks“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286821.
Der volle Inhalt der QuelleAutonoma fordon förlitar sig på sensorer för att skapa en bild av omgivningen. På en tung lastbil placeras sensorerna på multipla ställen, till exempel på hytten, chassiet och på trailern för att öka siktfältet och för att minska blinda områden. Vanligtvis presterar sensorerna som bäst när de är stationära i förhållande till marken, därför kan stora och snabba rörelser, som är vanliga på en lastbil, leda till nedsatt prestanda, felaktig data och i värsta fall fallerande sensorer. På grund av detta så finns det ett stort behov av att validera sensordata innan det används för kritiskt beslutsfattande. Den här avhandlingen föreslår domänadaption som en av de strategier för att samvalidera Tröghetsmätningssensorer (IMU-sensorer). Det föreslagna Generative Adversarial Network (GAN) baserade ramverket förutspår en Tröghetssensors data genom att implicit lära sig den interna dynamiken från andra Tröghetssensorer som är monterade på lastbilen. Den här prediktionsmodellen kombinerat med andra sensorfusionsstrategier kan användas av kontrollsystemet för att i realtid validera Tröghetssensorerna. Med hjälp av data insamlat från verkliga experiment visas det att det föreslagna ramverket klarar av att med hög noggrannhet konvertera obehandlade Tröghetssensor-sekvenser mellan domäner. Ytterligare en undersökning mellan Long Short Term Memory (LSTM) och WaveNet-baserade arkitekturer görs för att visa överlägsenheten i WaveNets när det gäller prestanda och beräkningseffektivitet.
Gattoni, Giacomo. „Improving the reliability of recurrent neural networks while dealing with bad data“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Den vollen Inhalt der Quelle findenAnbil, Parthipan Sarath Chandar. „On challenges in training recurrent neural networks“. Thèse, 2019. http://hdl.handle.net/1866/23435.
Der volle Inhalt der QuelleIn a multi-step prediction problem, the prediction at each time step can depend on the input at any of the previous time steps far in the past. Modelling such long-term dependencies is one of the fundamental problems in machine learning. In theory, Recurrent Neural Networks (RNNs) can model any long-term dependency. In practice, they can only model short-term dependencies due to the problem of vanishing and exploding gradients. This thesis explores the problem of vanishing gradient in recurrent neural networks and proposes novel solutions for the same. Chapter 3 explores the idea of using external memory to store the hidden states of a Long Short Term Memory (LSTM) network. By making the read and write operations of the external memory discrete, the proposed architecture reduces the rate of gradients vanishing in an LSTM. These discrete operations also enable the network to create dynamic skip connections across time. Chapter 4 attempts to characterize all the sources of vanishing gradients in a recurrent neural network and proposes a new recurrent architecture which has significantly better gradient flow than state-of-the-art recurrent architectures. The proposed Non-saturating Recurrent Units (NRUs) have no saturating activation functions and use additive cell updates instead of multiplicative cell updates. Chapter 5 discusses the challenges of using recurrent neural networks in the context of lifelong learning. In the lifelong learning setting, the network is expected to learn a series of tasks over its lifetime. The dependencies in lifelong learning are not just within a task, but also across the tasks. This chapter discusses the two fundamental problems in lifelong learning: (i) catastrophic forgetting of old tasks, and (ii) network capacity saturation. Further, it proposes a solution to solve both these problems while training a recurrent neural network.
Bücher zum Thema "LSTM unit"
D, Ashari. Antara tugas & hobby [i.e. hobi]: Otobiografi unik seorang pejuang, diplomat, menteri, pelukis, atlet, vegetarian, dan pelopor LSM. [Jakarta, Indonesia: Yayasan Wiratama 45, 1999.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "LSTM unit"
Li, Yancui, Chunxiao Lai, Jike Feng und Hongyu Feng. „Chinese and English Elementary Discourse Units Recognition Based on Bi-LSTM-CRF Model“. In Lecture Notes in Computer Science, 329–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63031-7_24.
Der volle Inhalt der QuelleOkut, Hayrettin. „Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory“. In Deep Learning Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96180.
Der volle Inhalt der QuelleHusna, Asma, Saman Hassanzadeh Amin und Bharat Shah. „Demand Forecasting in Supply Chain Management Using Different Deep Learning Methods“. In Advances in Logistics, Operations, and Management Science, 140–70. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3805-0.ch005.
Der volle Inhalt der QuelleSaxena, Suchitra, Shikha Tripathi und Sudarshan Tsb. „Deep Robot-Human Interaction with Facial Emotion Recognition Using Gated Recurrent Units & Robotic Process Automation“. In Machine Learning and Artificial Intelligence. IOS Press, 2020. http://dx.doi.org/10.3233/faia200773.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "LSTM unit"
Chen, Zhenzhong, und Wanjie Sun. „Scanpath Prediction for Visual Attention using IOR-ROI LSTM“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/89.
Der volle Inhalt der QuelleNina, Oliver, und Andres Rodriguez. „Simplified LSTM unit and search space probability exploration for image description“. In 2015 10th International Conference on Information, Communications and Signal Processing (ICICS). IEEE, 2015. http://dx.doi.org/10.1109/icics.2015.7459976.
Der volle Inhalt der QuelleWan, Vincent, Yannis Agiomyrgiannakis, Hanna Silen und Jakub Vít. „Google’s Next-Generation Real-Time Unit-Selection Synthesizer Using Sequence-to-Sequence LSTM-Based Autoencoders“. In Interspeech 2017. ISCA: ISCA, 2017. http://dx.doi.org/10.21437/interspeech.2017-1107.
Der volle Inhalt der QuelleHo, Thi-Nga, Duy-Cat Can und EngSiong Chng. „An Investigation of Word Embeddings with Deep Bidirectional LSTM for Sentence Unit Detection in Automatic Speech Transcription“. In 2018 International Conference on Asian Language Processing (IALP). IEEE, 2018. http://dx.doi.org/10.1109/ialp.2018.8629114.
Der volle Inhalt der QuelleFeng, Yufei, Fuyu Lv, Weichen Shen, Menghan Wang, Fei Sun, Yu Zhu und Keping Yang. „Deep Session Interest Network for Click-Through Rate Prediction“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/319.
Der volle Inhalt der QuelleGupta, Ashit, Vishal Jadhav, Mukul Patil, Anirudh Deodhar und Venkataramana Runkana. „Forecasting of Fouling in Air Pre-Heaters Through Deep Learning“. In ASME 2021 Power Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/power2021-64665.
Der volle Inhalt der QuelleYang, Ruiyue, Wei Liu, Xiaozhou Qin, Zhongwei Huang, Yu Shi, Zhaoyu Pang, Yiqun Zhang, Jingbin Li und Tianyu Wang. „A Physics-Constrained Data-Driven Workflow for Predicting Coalbed Methane Well Production Using A Combined Gated Recurrent Unit and Multi-Layer Perception Neural Network Model“. In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205903-ms.
Der volle Inhalt der QuelleWang, Fuyong, Yun Zai, Jiuyu Zhao und Siyi Fang. „Field Application of Deep Learning for Flow Rate Prediction with Downhole Temperature and Pressure“. In International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21364-ms.
Der volle Inhalt der QuelleLau, Zhi Jie, und Chris Philips. „Advanced T-LSIM System Detections using Amplified External Isolated Source-Sense Unit“. In ISTFA 2018. ASM International, 2018. http://dx.doi.org/10.31399/asm.cp.istfa2018p0200.
Der volle Inhalt der QuelleAlencar, Victor Aquiles Soares de Barros, Lucas Ribeiro Pessamilio, Felipe Rooke Da Silva, Heder Soares Bernardino und Alex Borges Vieira. „Predição de Séries Temporais de Demanda em Modelos de Compartilhamento de Veículos para Modelos Uni e Multi Variáveis“. In Workshop de Computação Urbana. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/courb.2020.12355.
Der volle Inhalt der Quelle