Auswahl der wissenschaftlichen Literatur zum Thema „LR-FHSS“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "LR-FHSS" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "LR-FHSS"

1

Sanchez-Vital, Roger, Lluís Casals, Bartomeu Heer-Salva, Rafael Vidal, Carles Gomez und Eduard Garcia-Villegas. „Energy Performance of LR-FHSS: Analysis and Evaluation“. Sensors 24, Nr. 17 (05.09.2024): 5770. http://dx.doi.org/10.3390/s24175770.

Der volle Inhalt der Quelle
Annotation:
Long-range frequency hopping spread spectrum (LR-FHSS) is a pivotal advancement in the LoRaWAN protocol that is designed to enhance the network’s capacity and robustness, particularly in densely populated environments. Although energy consumption is paramount in LoRaWAN-based end devices, this is the first study in the literature, to our knowledge, that models the impact of this novel mechanism on energy consumption. In this article, we provide a comprehensive energy consumption analytical model of LR-FHSS, focusing on three critical metrics: average current consumption, battery lifetime, and energy efficiency of data transmission. The model is based on measurements performed on real hardware in a fully operational LR-FHSS network. While in our evaluation, LR-FHSS can show worse consumption figures than LoRa, we find that with optimal configuration, the battery lifetime of LR-FHSS end devices can reach 2.5 years for a 50 min notification period. For the most energy-efficient payload size, this lifespan can be extended to a theoretical maximum of up to 16 years with a one-day notification interval using a cell-coin battery.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Boquet, Guillem, Pere Tuset-Peiro, Ferran Adelantado, Thomas Watteyne und Xavier Vilajosana. „LR-FHSS: Overview and Performance Analysis“. IEEE Communications Magazine 59, Nr. 3 (März 2021): 30–36. http://dx.doi.org/10.1109/mcom.001.2000627.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ullah, Muhammad Asad, Konstantin Mikhaylov und Hirley Alves. „Analysis and Simulation of LoRaWAN LR-FHSS for Direct-to-Satellite Scenario“. IEEE Wireless Communications Letters 11, Nr. 3 (März 2022): 548–52. http://dx.doi.org/10.1109/lwc.2021.3135984.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Maldonado, Diego, Leonardo S. Cardoso, Juan A. Fraire, Alexandre Guitton, Oana Iova, Megumi Kaneko und Hervé Rivano. „Enhanced LR-FHSS receiver for headerless frame recovery in space–terrestrial integrated IoT networks“. Computer Networks 257 (Februar 2025): 111018. https://doi.org/10.1016/j.comnet.2024.111018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Castro-Carrera, Alejandro. „A systematic review of LEO satellite services for IoT“. Multidisciplinary Reviews 8, Nr. 3 (30.10.2024): 2025083. http://dx.doi.org/10.31893/multirev.2025083.

Der volle Inhalt der Quelle
Annotation:
The term "Industry 4.0," or the "fourth industrial revolution," is used to describe a period of significant technological advancement within the manufacturing sector. This revolution is characterized by the integration of advanced technologies, including artificial intelligence, robotics, augmented reality, additive manufacturing, the Internet of Things (IoT), big data, and cybersecurity, into the manufacturing processes. In this context, the IoT plays a pivotal role in the collection and transmission of data in real-time, thereby facilitating informed decision-making and process optimization. Nevertheless, the implementation of this technology is confronted with considerable challenges pertaining to connectivity, particularly in remote locations. Low Earth Orbit (LEO) satellites have been identified as an effective solution, providing global connectivity and support for IoT applications in inaccessible regions. The present study conducts a systematic review of research on the use of LEO satellite constellations, addressing issues of coverage, latency, protocols, and data transmission efficiency for the IoT. A search of databases such as Scopus and Google Scholar, conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) methodology, yielded forty relevant articles for analysis. The results underscore the significance of Low Power Wide Area Networks (LPWAN), protocols such as Long Range (LoRa) and Long-Range Frequency Hopping Spead Spectrum (LR-FHSS) in IoT satellite communication, while also highlighting the challenges and advances in integrating space and terrestrial networks. Consequently, this review serves as a valuable foundation for future research and practical applications in Industry 4.0.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bukhari, Jumana, und Zhenghao Zhang. „Understanding Long Range-Frequency Hopping Spread Spectrum (LR-FHSS) with Real-World Packet Traces“. ACM Transactions on Sensor Networks, 05.09.2024. http://dx.doi.org/10.1145/3694971.

Der volle Inhalt der Quelle
Annotation:
Long Range-Frequency Hopping Spread Spectrum (LR-FHSS) is a new physical layer option that has been recently added to the LoRa family with the promise of achieving much higher network capacity than the previous versions of LoRa. In this paper, we present our evaluation of LR-FHSS based on real-world packet traces collected with an LR-FHSS device and a receiver we designed and implemented in software. We overcame challenges due to the lack of documentations of LR-FHSS and our study is the first of its kind that processes signals transmitted by an actual LR-FHSS device with practical issues such as frequency error. Our results show that LR-FHSS meets its expectations in communication range and network capacity. We also propose customized methods for LR-FHSS that improve its performance significantly, allowing our receiver to achieve higher network capacity than those reported earlier.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Knop, Diogo Nogueira, João Luiz Rebelatto und Richard Demo Souza. „LR-FHSS with Network-Coded Header Replication“. IEEE Transactions on Vehicular Technology, 2024, 1–5. http://dx.doi.org/10.1109/tvt.2024.3350635.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Maleki, Alireza, Ha H. Nguyen, Ebrahim Bedeer und Robert Barton. „Outage Probability Analysis of LR-FHSS and D2D-aided LR-FHSS Protocols in Shadowed-Rice Fading Direct-to-Satellite IoT Networks“. IEEE Internet of Things Journal, 2023, 1. http://dx.doi.org/10.1109/jiot.2023.3329361.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sant’Ana, Jean Michel de Souza, Osvaldo da Silva Neto, Arliones Hoeller, João Luiz Rebelatto, Richard Demo Souza und Hirley Alves. „Asynchronous Contention Resolution-Aided ALOHA in LR-FHSS Networks“. IEEE Internet of Things Journal, 2024, 1. http://dx.doi.org/10.1109/jiot.2024.3355709.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Maleki, Alireza, Ha H. Nguyen und Robert Barton. „Outage Probability Analysis of LR-FHSS in Satellite IoT Networks“. IEEE Communications Letters, 2022, 1. http://dx.doi.org/10.1109/lcomm.2022.3233524.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "LR-FHSS"

1

Tran, Van Lic. „Développement de techniques radio cognitives pour les communications LP-WAN terrestres et satellites“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4048.

Der volle Inhalt der Quelle
Annotation:
Cette recherche se concentre sur l'amélioration des communications des réseaux à large bande basse consommation (LP-WAN) en utilisant des technologies de radio cognitive. Plus précisément, elle aborde le défi de la localisation du réseau en utilisant l'indicateur de force du signal reçu (RSSI) des réseaux LoRa, ainsi que l'algorithme ML-MTL proposé, pour améliorer la précision de l'estimation de la position des dispositifs finaux. De plus, cette étude explore l'estimation et l'extension de la couverture LoRaWAN. En ce qui concerne l'estimation de la couverture, elle démontre que la collecte de plusieurs points de données autour de chaque passerelle permet de créer des cartes thermiques de couverture précises grâce à un algorithme d'estimation de la couverture LoRaWAN proposé. Cette approche permet de localiser efficacement les zones où des passerelles supplémentaires sont nécessaires pour améliorer la fiabilité du réseau. Pour l'extension de la couverture, l'étude se concentre sur l'optimisation de la couverture terrestre des LP-WAN par le biais de stratégies basées sur des relais. En intégrant des techniques de radio cognitive, la recherche vise à étendre la zone de couverture des réseaux LoRa, améliorant à la fois la portée et la fiabilité des services de communication. En termes de communication par satellite, le projet utilise Omnet++ pour simuler la performance et la latence des réseaux LoRa dans un environnement satellite. La simulation évalue la faisabilité de l'utilisation des réseaux LoRa dans les communications par satellite, mettant en évidence son potentiel pour étendre les capacités des LP-WAN aux régions éloignées ou difficiles d'accès par le biais de liaisons satellites. En abordant à la fois les domaines terrestre et satellite, cette recherche adopte une approche globale pour faire progresser les communications LP-WAN. L'intégration des techniques de radio cognitive contribue au développement de systèmes de communication intelligents et adaptatifs qui améliorent l'efficacité, la fiabilité et la couverture dans les environnements LP-WAN terrestres et par satellite
This research focuses on improving Low-Power Wide-Area Network (LP-WAN) communications using cognitive radio technologies. Specifically, it addresses the challenge of network localization by utilizing the Received Signal Strength Indicator (RSSI) from LoRa networks, along with the proposed ML-MTL algorithm, to improve the accuracy of end device position estimation. Additionally, this study explores LoRaWAN coverage estimation and extension. In coverage estimation, it demonstrates that gathering multiple data points around each gateway enables the creation of accurate coverage heat maps using a proposed LoRaWAN coverage estimation algorithm. This approach effectively pinpoints areas where additional gateways are needed to improve network reliability. For coverage extension, the study focuses on optimizing terrestrial LP-WAN coverage through relay-based strategies. By incorporating cognitive radio techniques, the research aims to expand the coverage area of LoRa networks, enhancing both the reach and reliability of communication services. In terms of satellite communication, the project employs Omnet++ to simulate the performance and latency of LoRa networks in a satellite environment. The simulation assesses the feasibility of using LoRa networks in satellite communications, highlighting its potential for extending LP-WAN capabilities to remote or hard-to-reach regions through satellite links. By addressing both terrestrial and satellite domains, this research adopts a comprehensive approach to advancing LP-WAN communications. The integration of cognitive radio techniques contributes to the development of intelligent, adaptive communication systems that enhance efficiency, reliability, and coverage across terrestrial and satellite LP-WAN environments
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "LR-FHSS"

1

Maleki, Alireza, Ebrahim Bedeer und Robert Barton. „Performance Evaluation and Low-Complexity Detection of the PHY Modulation of LR-FHSS Transmission in IoT Networks“. In 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/vtc2024-spring62846.2024.10683565.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

de Souza Sant’Ana, Jean Michel, Arliones Hoeller, Hirley Alves und Richard Demo Souza. „LR-FHSS-Sim: A Discrete-Event Simulator for LR-FHSS Networks“. In 2024 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). IEEE, 2024. http://dx.doi.org/10.1109/eucnc/6gsummit60053.2024.10597000.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ben Temim, Mohamed Amine, Guillaume Ferré und Olivier Seller. „An LR-FHSS Receiver for a Massive IoT Connectivity“. In 2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2023. http://dx.doi.org/10.1109/pimrc56721.2023.10293878.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhang, Fanhao, Fu Yu, Xiaolong Zheng, Liang Liu und Huadong Ma. „DFH: Improving the Reliability of LR-FHSS via Dynamic Frequency Hopping“. In 2023 IEEE 31st International Conference on Network Protocols (ICNP). IEEE, 2023. http://dx.doi.org/10.1109/icnp59255.2023.10355600.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie