Zeitschriftenartikel zum Thema „Low-Resourced language“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Low-Resourced language" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Allah, Fadoua Ataa, und Siham Boulaknadel. „NEW TRENDS IN LESS-RESOURCED LANGUAGE PROCESSING: CASE OF AMAZIGH LANGUAGE“. International Journal on Natural Language Computing 12, Nr. 2 (29.04.2023): 75–89. http://dx.doi.org/10.5121/ijnlc.2023.12207.
Der volle Inhalt der QuelleKipyatkova, Irina, und Ildar Kagirov. „Deep Models for Low-Resourced Speech Recognition: Livvi-Karelian Case“. Mathematics 11, Nr. 18 (05.09.2023): 3814. http://dx.doi.org/10.3390/math11183814.
Der volle Inhalt der QuelleSingh, Pranaydeep, Orphée De Clercq und Els Lefever. „Distilling Monolingual Models from Large Multilingual Transformers“. Electronics 12, Nr. 4 (18.02.2023): 1022. http://dx.doi.org/10.3390/electronics12041022.
Der volle Inhalt der QuelleMabokela, Koena Ronny, Mpho Primus und Turgay Celik. „Explainable Pre-Trained Language Models for Sentiment Analysis in Low-Resourced Languages“. Big Data and Cognitive Computing 8, Nr. 11 (15.11.2024): 160. http://dx.doi.org/10.3390/bdcc8110160.
Der volle Inhalt der QuelleShafiq, Nida, Isma Hamid, Muhammad Asif, Qamar Nawaz, Hanan Aljuaid und Hamid Ali. „Abstractive text summarization of low-resourced languages using deep learning“. PeerJ Computer Science 9 (13.01.2023): e1176. http://dx.doi.org/10.7717/peerj-cs.1176.
Der volle Inhalt der QuellePandit, Rajat, Saptarshi Sengupta, Sudip Kumar Naskar, Niladri Sekhar Dash und Mohini Mohan Sardar. „Improving Semantic Similarity with Cross-Lingual Resources: A Study in Bangla—A Low Resourced Language“. Informatics 6, Nr. 2 (05.05.2019): 19. http://dx.doi.org/10.3390/informatics6020019.
Der volle Inhalt der QuelleBadawi, Soran. „Transformer-Based Neural Network Machine Translation Model for the Kurdish Sorani Dialect“. UHD Journal of Science and Technology 7, Nr. 1 (15.01.2023): 15–21. http://dx.doi.org/10.21928/uhdjst.v7n1y2023.pp15-21.
Der volle Inhalt der QuelleKapočiūtė-Dzikienė, Jurgita, und Senait Gebremichael Tesfagergish. „Part-of-Speech Tagging via Deep Neural Networks for Northern-Ethiopic Languages“. Information Technology And Control 49, Nr. 4 (19.12.2020): 482–94. http://dx.doi.org/10.5755/j01.itc.49.4.26808.
Der volle Inhalt der QuelleNitu, Melania, und Mihai Dascalu. „Natural Language Processing Tools for Romanian – Going Beyond a Low-Resource Language.“ Interaction Design and Architecture(s), Nr. 60 (15.03.2024): 7–26. http://dx.doi.org/10.55612/s-5002-060-001sp.
Der volle Inhalt der QuelleNgué Um, Emmanuel, Émilie Eliette, Caroline Ngo Tjomb Assembe und Francis Morton Tyers. „Developing a Rule-Based Machine-Translation System, Ewondo–French–Ewondo“. International Journal of Humanities and Arts Computing 16, Nr. 2 (Oktober 2022): 166–81. http://dx.doi.org/10.3366/ijhac.2022.0289.
Der volle Inhalt der QuelleAgbesi, Victor Kwaku, Wenyu Chen, Sophyani Banaamwini Yussif, Md Altab Hossin, Chiagoziem C. Ukwuoma, Noble A. Kuadey, Colin Collinson Agbesi, Nagwan Abdel Samee, Mona M. Jamjoom und Mugahed A. Al-antari. „Pre-Trained Transformer-Based Models for Text Classification Using Low-Resourced Ewe Language“. Systems 12, Nr. 1 (19.12.2023): 1. http://dx.doi.org/10.3390/systems12010001.
Der volle Inhalt der QuelleAbigail Rai. „Part-of-Speech (POS) Tagging of Low-Resource Language (Limbu) with Deep learning“. Panamerican Mathematical Journal 35, Nr. 1s (13.11.2024): 149–57. http://dx.doi.org/10.52783/pmj.v35.i1s.2297.
Der volle Inhalt der QuelleMasethe, Hlaudi Daniel, Mosima Anna Masethe, Sunday Olusegun Ojo, Fausto Giunchiglia und Pius Adewale Owolawi. „Word Sense Disambiguation for Morphologically Rich Low-Resourced Languages: A Systematic Literature Review and Meta-Analysis“. Information 15, Nr. 9 (04.09.2024): 540. http://dx.doi.org/10.3390/info15090540.
Der volle Inhalt der QuelleShaukat, Saima, Muhammad Asad und Asmara Akram. „Developing an Urdu Lemmatizer Using a Dictionary-Based Lookup Approach“. Applied Sciences 13, Nr. 8 (19.04.2023): 5103. http://dx.doi.org/10.3390/app13085103.
Der volle Inhalt der QuelleNazir, Shahzad, Muhammad Asif, Mariam Rehman und Shahbaz Ahmad. „Machine learning based framework for fine-grained word segmentation and enhanced text normalization for low resourced language“. PeerJ Computer Science 10 (31.01.2024): e1704. http://dx.doi.org/10.7717/peerj-cs.1704.
Der volle Inhalt der QuellePăiș, Vasile, Verginica Barbu Mititelu, Elena Irimia, Radu Ion und Dan Tufiș. „Under-Represented Speech Dataset from Open Data: Case Study on the Romanian Language“. Applied Sciences 14, Nr. 19 (07.10.2024): 9043. http://dx.doi.org/10.3390/app14199043.
Der volle Inhalt der QuelleJP, Sanjanasri, Vijay Krishna Menon, Soman KP, Rajendran S und Agnieszka Wolk. „Generation of Cross-Lingual Word Vectors for Low-Resourced Languages Using Deep Learning and Topological Metrics in a Data-Efficient Way“. Electronics 10, Nr. 12 (08.06.2021): 1372. http://dx.doi.org/10.3390/electronics10121372.
Der volle Inhalt der QuelleRamesh, Akshai, Venkatesh Balavadhani Parthasarathy, Rejwanul Haque und Andy Way. „Comparing Statistical and Neural Machine Translation Performance on Hindi-To-Tamil and English-To-Tamil“. Digital 1, Nr. 2 (02.04.2021): 86–102. http://dx.doi.org/10.3390/digital1020007.
Der volle Inhalt der QuelleZia, Haris Bin, Ignacio Castro, Arkaitz Zubiaga und Gareth Tyson. „Improving Zero-Shot Cross-Lingual Hate Speech Detection with Pseudo-Label Fine-Tuning of Transformer Language Models“. Proceedings of the International AAAI Conference on Web and Social Media 16 (31.05.2022): 1435–39. http://dx.doi.org/10.1609/icwsm.v16i1.19402.
Der volle Inhalt der QuellePoudel, Guru Prasad. „Speaking in English Language Classroom: Teachers’ Strategies and Confronting Problems“. NELTA Bagmati Journal 3, Nr. 1 (31.12.2022): 1–18. http://dx.doi.org/10.3126/nbj.v3i1.53412.
Der volle Inhalt der QuelleKalluri, Kartheek. „ADAPTING LLMs FOR LOW RESOURCE LANGUAGES-TECHNIQUES AND ETHICAL CONSIDERATIONS“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 12 (30.12.2024): 1–6. https://doi.org/10.55041/isjem00140.
Der volle Inhalt der QuelleAdjeisah, Michael, Guohua Liu, Douglas Omwenga Nyabuga, Richard Nuetey Nortey und Jinling Song. „Pseudotext Injection and Advance Filtering of Low-Resource Corpus for Neural Machine Translation“. Computational Intelligence and Neuroscience 2021 (11.04.2021): 1–10. http://dx.doi.org/10.1155/2021/6682385.
Der volle Inhalt der QuelleMon, Aye Nyein, Win Pa Pa und Ye Kyaw Thu. „UCSY-SC1: A Myanmar speech corpus for automatic speech recognition“. International Journal of Electrical and Computer Engineering (IJECE) 9, Nr. 4 (01.08.2019): 3194. http://dx.doi.org/10.11591/ijece.v9i4.pp3194-3202.
Der volle Inhalt der QuelleSirora, Leslie Wellington, und Mainford Mutandavari. „A Deep Learning Automatic Speech Recognition Model for Shona Language“. International Journal of Innovative Research in Computer and Communication Engineering 12, Nr. 09 (25.09.2024): 1–14. http://dx.doi.org/10.15680/ijircce.2024.1209019.
Der volle Inhalt der QuelleMohamed Basheer K. P., Rizwana Kallooravi Thandil, Muneer V. K. ,. „Utilizing BiLSTM For Fine-Grained Aspect-Based Travel Recommendations Using Travel Reviews In Low Resourced Language“. Journal of Electrical Systems 20, Nr. 2s (04.04.2024): 233–40. http://dx.doi.org/10.52783/jes.1133.
Der volle Inhalt der QuelleWaite, S. „Low-resourced self-access with EAP in the developing world: the great enabler?“ ELT Journal 48, Nr. 3 (01.07.1994): 233–42. http://dx.doi.org/10.1093/elt/48.3.233.
Der volle Inhalt der QuelleLiapis, Charalampos M., Konstantinos Kyritsis, Isidoros Perikos, Nikolaos Spatiotis und Michael Paraskevas. „A Hybrid Ensemble Approach for Greek Text Classification Based on Multilingual Models“. Big Data and Cognitive Computing 8, Nr. 10 (14.10.2024): 137. http://dx.doi.org/10.3390/bdcc8100137.
Der volle Inhalt der QuelleBhagath, Parabattina, Malempati Shanmukha und Pradip K. Das. „Hindi spoken digit analysis for native and non-native speakers“. IAES International Journal of Artificial Intelligence (IJ-AI) 14, Nr. 2 (01.04.2025): 1561. https://doi.org/10.11591/ijai.v14.i2.pp1561-1567.
Der volle Inhalt der QuelleObosu, Gideon Kwesi, Irene Vanderpuye, Nana Afia Opoku-Asare und Timothy Olufemi Adigun. „A Qualitative Inquiry into the Factors that Influence Deaf Children's Early Sign Language Acquisition among Deaf Children in Ghana“. Sign Language Studies 23, Nr. 4 (Juni 2023): 527–54. http://dx.doi.org/10.1353/sls.2023.a905538.
Der volle Inhalt der QuellePasini, Tommaso, Alessandro Raganato und Roberto Navigli. „XL-WSD: An Extra-Large and Cross-Lingual Evaluation Framework for Word Sense Disambiguation“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 15 (18.05.2021): 13648–56. http://dx.doi.org/10.1609/aaai.v35i15.17609.
Der volle Inhalt der QuelleDunđer, Ivan. „Machine Translation System for the Industry Domain and Croatian Language“. Journal of information and organizational sciences 44, Nr. 1 (25.06.2020): 33–50. http://dx.doi.org/10.31341/jios.44.1.2.
Der volle Inhalt der QuelleBani, Rkia, Samir Amri, Lahbib Zenkouar und Zouhair Guennoun. „Toward accurate Amazigh part-of-speech tagging“. IAES International Journal of Artificial Intelligence (IJ-AI) 13, Nr. 1 (01.03.2024): 572. http://dx.doi.org/10.11591/ijai.v13.i1.pp572-580.
Der volle Inhalt der QuelleGamage, Buddhi, Randil Pushpananda, Thilini Nadungodage und Ruvan Weerasinghe. „Applicability of End-to-End Deep Neural Architecture to Sinhala Speech Recognition“. International Journal on Advances in ICT for Emerging Regions (ICTer) 17, Nr. 1 (31.05.2024): 17–21. http://dx.doi.org/10.4038/icter.v17i1.7273.
Der volle Inhalt der QuelleKhan, Muzammil, Kifayat Ullah, Yasser Alharbi, Ali Alferaidi, Talal Saad Alharbi, Kusum Yadav, Naif Alsharabi und Aakash Ahmad. „Understanding the Research Challenges in Low-Resource Language and Linking Bilingual News Articles in Multilingual News Archive“. Applied Sciences 13, Nr. 15 (25.07.2023): 8566. http://dx.doi.org/10.3390/app13158566.
Der volle Inhalt der QuelleSilber Varod, Vered, Ingo Siegert, Oliver Jokisch, Yamini Sinha und Nitza Geri. „A cross-language study of speech recognition systems for English, German, and Hebrew“. Online Journal of Applied Knowledge Management 9, Nr. 1 (26.07.2021): 1–15. http://dx.doi.org/10.36965/ojakm.2021.9(1)1-15.
Der volle Inhalt der QuelleKhan, Muzammil, Sarwar Shah Khan, Yasser Alharbi, Ali Alferaidi, Talal Saad Alharbi und Kusum Yadav. „The Role of Transliterated Words in Linking Bilingual News Articles in an Archive“. Applied Sciences 13, Nr. 7 (31.03.2023): 4435. http://dx.doi.org/10.3390/app13074435.
Der volle Inhalt der QuelleCadwell, Patrick, Sharon O’Brien und Eric DeLuca. „More than tweets“. Translation Spaces 8, Nr. 2 (05.11.2019): 300–333. http://dx.doi.org/10.1075/ts.19018.cad.
Der volle Inhalt der QuelleIyengar, Radhika. „Using Cognitive Neuroscience Principles to Design Efficient Reading Programs: Case Studies from India and Malawi Cognitive Neuroscience to Design Literacy Programs“. International Journal of Contemporary Education 2, Nr. 2 (21.07.2019): 38. http://dx.doi.org/10.11114/ijce.v2i2.4394.
Der volle Inhalt der QuelleJayawardena, Asitha D. L., Zelda J. Ghersin, Marcos Mirambeaux, Jose A. Bonilla, Ernesto Quiñones, Evelyn Zablah, Kevin Callans et al. „A Sustainable and Scalable Multidisciplinary Airway Teaching Mission: The Operation Airway 10-Year Experience“. Otolaryngology–Head and Neck Surgery 163, Nr. 5 (30.06.2020): 971–78. http://dx.doi.org/10.1177/0194599820935042.
Der volle Inhalt der QuelleKumar Nayak, Subrat, Ajit Kumar Nayak, Smitaprava Mishra, Prithviraj Mohanty, Nrusingha Tripathy und Kumar Surjeet Chaudhury. „Exploring Speech Emotion Recognition in Tribal Language with Deep Learning Techniques“. International journal of electrical and computer engineering systems 16, Nr. 1 (02.01.2025): 53–64. https://doi.org/10.32985/ijeces.16.1.6.
Der volle Inhalt der QuelleKiros, Atakilti Brhanu, und Petros Ukbagergis Aray. „Tigrigna language spellchecker and correction system for mobile phone devices“. International Journal of Electrical and Computer Engineering (IJECE) 11, Nr. 3 (01.06.2021): 2307. http://dx.doi.org/10.11591/ijece.v11i3.pp2307-2314.
Der volle Inhalt der QuelleMulla, Rahesha, und B. Suresh Kumar. „Text-Independent Automatic Dialect Recognition of Marathi Language using Spectro-Temporal Characteristics of Voice“. International Journal on Recent and Innovation Trends in Computing and Communication 10, Nr. 2s (31.12.2022): 313–21. http://dx.doi.org/10.17762/ijritcc.v10i2s.5949.
Der volle Inhalt der QuellePhaladi, Amanda, und Thipe Modipa. „The Evaluation of a Code-Switched Sepedi-English Automatic Speech Recognition System“. International Journal on Cybernetics & Informatics 13, Nr. 2 (10.03.2024): 33–44. http://dx.doi.org/10.5121/ijci.2024.130203.
Der volle Inhalt der QuelleAravinthan, Archchitha, und Charles Eugene. „Exploring Recent NLP Advances for Tamil: Word Vectors and Hybrid Deep Learning Architectures“. International Journal on Advances in ICT for Emerging Regions (ICTer) 17, Nr. 2 (09.10.2024): 85–101. http://dx.doi.org/10.4038/icter.v17i2.7279.
Der volle Inhalt der QuelleZgank, Andrej. „Influence of Highly Inflected Word Forms and Acoustic Background on the Robustness of Automatic Speech Recognition for Human–Computer Interaction“. Mathematics 10, Nr. 5 (24.02.2022): 711. http://dx.doi.org/10.3390/math10050711.
Der volle Inhalt der QuelleHoque, Md Nesarul, und Umme Salma. „Detecting Level of Depression from Social Media Posts for the Low-resource Bengali Language“. Journal of Engineering Advancements 4, Nr. 02 (28.06.2023): 49–56. http://dx.doi.org/10.38032/jea.2023.02.003.
Der volle Inhalt der QuelleShashi Shekhar, Rashmi Gupta, Jeetendra Kumar,. „Hindi Abstractive Text Summarization using Transliteration with Pre-trained Model“. Journal of Electrical Systems 20, Nr. 3s (31.03.2024): 2089–110. http://dx.doi.org/10.52783/jes.1810.
Der volle Inhalt der QuelleRananga, Seani, Bassey Isong, Abiodun Modupe und Vukosi Marivate. „Misinformation Detection: A Review for High and Low-Resource Languages“. Journal of Information Systems and Informatics 6, Nr. 4 (31.12.2024): 2892–922. https://doi.org/10.51519/journalisi.v6i4.931.
Der volle Inhalt der QuelleChoi, Carolyn Areum. „Transperipheral Educational Mobility: Less Privileged South Korean Young Adults Pursuing English Language Study in a Peripheral City in the Philippines“. positions: asia critique 30, Nr. 2 (01.05.2022): 377–407. http://dx.doi.org/10.1215/10679847-9573396.
Der volle Inhalt der QuelleBogdanović, Miloš, Milena Frtunić Gligorijević, Jelena Kocić und Leonid Stoimenov. „Improving Text Recognition Accuracy for Serbian Legal Documents Using BERT“. Applied Sciences 15, Nr. 2 (10.01.2025): 615. https://doi.org/10.3390/app15020615.
Der volle Inhalt der Quelle