Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Low-Resourced language“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Low-Resourced language" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Low-Resourced language"
Allah, Fadoua Ataa, und Siham Boulaknadel. „NEW TRENDS IN LESS-RESOURCED LANGUAGE PROCESSING: CASE OF AMAZIGH LANGUAGE“. International Journal on Natural Language Computing 12, Nr. 2 (29.04.2023): 75–89. http://dx.doi.org/10.5121/ijnlc.2023.12207.
Der volle Inhalt der QuelleKipyatkova, Irina, und Ildar Kagirov. „Deep Models for Low-Resourced Speech Recognition: Livvi-Karelian Case“. Mathematics 11, Nr. 18 (05.09.2023): 3814. http://dx.doi.org/10.3390/math11183814.
Der volle Inhalt der QuelleSingh, Pranaydeep, Orphée De Clercq und Els Lefever. „Distilling Monolingual Models from Large Multilingual Transformers“. Electronics 12, Nr. 4 (18.02.2023): 1022. http://dx.doi.org/10.3390/electronics12041022.
Der volle Inhalt der QuelleMabokela, Koena Ronny, Mpho Primus und Turgay Celik. „Explainable Pre-Trained Language Models for Sentiment Analysis in Low-Resourced Languages“. Big Data and Cognitive Computing 8, Nr. 11 (15.11.2024): 160. http://dx.doi.org/10.3390/bdcc8110160.
Der volle Inhalt der QuelleShafiq, Nida, Isma Hamid, Muhammad Asif, Qamar Nawaz, Hanan Aljuaid und Hamid Ali. „Abstractive text summarization of low-resourced languages using deep learning“. PeerJ Computer Science 9 (13.01.2023): e1176. http://dx.doi.org/10.7717/peerj-cs.1176.
Der volle Inhalt der QuellePandit, Rajat, Saptarshi Sengupta, Sudip Kumar Naskar, Niladri Sekhar Dash und Mohini Mohan Sardar. „Improving Semantic Similarity with Cross-Lingual Resources: A Study in Bangla—A Low Resourced Language“. Informatics 6, Nr. 2 (05.05.2019): 19. http://dx.doi.org/10.3390/informatics6020019.
Der volle Inhalt der QuelleBadawi, Soran. „Transformer-Based Neural Network Machine Translation Model for the Kurdish Sorani Dialect“. UHD Journal of Science and Technology 7, Nr. 1 (15.01.2023): 15–21. http://dx.doi.org/10.21928/uhdjst.v7n1y2023.pp15-21.
Der volle Inhalt der QuelleKapočiūtė-Dzikienė, Jurgita, und Senait Gebremichael Tesfagergish. „Part-of-Speech Tagging via Deep Neural Networks for Northern-Ethiopic Languages“. Information Technology And Control 49, Nr. 4 (19.12.2020): 482–94. http://dx.doi.org/10.5755/j01.itc.49.4.26808.
Der volle Inhalt der QuelleNitu, Melania, und Mihai Dascalu. „Natural Language Processing Tools for Romanian – Going Beyond a Low-Resource Language.“ Interaction Design and Architecture(s), Nr. 60 (15.03.2024): 7–26. http://dx.doi.org/10.55612/s-5002-060-001sp.
Der volle Inhalt der QuelleNgué Um, Emmanuel, Émilie Eliette, Caroline Ngo Tjomb Assembe und Francis Morton Tyers. „Developing a Rule-Based Machine-Translation System, Ewondo–French–Ewondo“. International Journal of Humanities and Arts Computing 16, Nr. 2 (Oktober 2022): 166–81. http://dx.doi.org/10.3366/ijhac.2022.0289.
Der volle Inhalt der QuelleDissertationen zum Thema "Low-Resourced language"
Aufrant, Lauriane. „Training parsers for low-resourced languages : improving cross-lingual transfer with monolingual knowledge“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS089/document.
Der volle Inhalt der QuelleAs a result of the recent blossoming of Machine Learning techniques, the Natural Language Processing field faces an increasingly thorny bottleneck: the most efficient algorithms entirely rely on the availability of large training data. These technological advances remain consequently unavailable for the 7,000 languages in the world, out of which most are low-resourced. One way to bypass this limitation is the approach of cross-lingual transfer, whereby resources available in another (source) language are leveraged to help building accurate systems in the desired (target) language. However, despite promising results in research settings, the standard transfer techniques lack the flexibility regarding cross-lingual resources needed to be fully usable in real-world scenarios: exploiting very sparse resources, or assorted arrays of resources. This limitation strongly diminishes the applicability of that approach. This thesis consequently proposes to combine multiple sources and resources for transfer, with an emphasis on selectivity: can we estimate which resource of which language is useful for which input? This strategy is put into practice in the frame of transition-based dependency parsing. To this end, a new transfer framework is designed, with a cascading architecture: it enables the desired combination, while ensuring better targeted exploitation of each resource, down to the level of the word. Empirical evaluation dampens indeed the enthusiasm for the purely cross-lingual approach -- it remains in general preferable to annotate just a few target sentences -- but also highlights its complementarity with other approaches. Several metrics are developed to characterize precisely cross-lingual similarities, syntactic idiosyncrasies, and the added value of cross-lingual information compared to monolingual training. The substantial benefits of typological knowledge are also explored. The whole study relies on a series of technical improvements regarding the parsing framework: this work includes the release of a new open source software, PanParser, which revisits the so-called dynamic oracles to extend their use cases. Several purely monolingual contributions complete this work, including an exploration of monolingual cascading, which offers promising perspectives with easy-then-hard strategies
Susman, Derya. „Turkish Large Vocabulary Continuous Speech Recognition By Using Limited Audio Corpus“. Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614207/index.pdf.
Der volle Inhalt der QuelleKarim, Hiva. „Best way for collecting data for low-resourced languages“. Thesis, Högskolan Dalarna, Mikrodataanalys, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:du-35945.
Der volle Inhalt der QuelleCordova, Johanna. „Le quechua dans les outils numériques, un défi pour le TAL ? Développement de ressources linguistiques et numériques pour le quechua ancashino“. Electronic Thesis or Diss., Paris, INALCO, 2024. http://www.theses.fr/2024INAL0031.
Der volle Inhalt der QuelleQuechua languages are one of the Amerindian language families with the largest number of native speakers. In Peru, according to the 2017 census, 13.9% of the population have Quechua as their first language, and around 20% speak it. However, the language is almost totally absent from digital tools. In natural language processing (NLP), it is an under-resourced language, with a strong disparity in the amount of resources depending on the variety of Quechua considered. The aim of this thesis is to develop a set of fundamental tools for the automatic processing of a variety of central Quechua, Ancash Quechua, spoken by around 400,000 people and in danger of extinction according to the UNESCO classification. This process involves three stages: digitisation of the resources available in this variety (dictionaries, written corpora), implementation of a morphological analyser, and development of a treebank for morpho-syntactic analysis. These resources will be made available on the web via applications, in particular a search engine that can be used to query the dictionaries available for this language. In a global context of preservation movement of native languages, and while ambitious policies related to linguistic rights are being deployed in the countries of the Andean region, the presence of Quechua in technologies would be an important lever to strengthen its practice and facilitate its teaching
Samson, Juan Sarah Flora. „Exploiting resources from closely-related languages for automatic speech recognition in low-resource languages from Malaysia“. Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAM061/document.
Der volle Inhalt der QuelleLanguages in Malaysia are dying in an alarming rate. As of today, 15 languages are in danger while two languages are extinct. One of the methods to save languages is by documenting languages, but it is a tedious task when performed manually.Automatic Speech Recognition (ASR) system could be a tool to help speed up the process of documenting speeches from the native speakers. However, building ASR systems for a target language requires a large amount of training data as current state-of-the-art techniques are based on empirical approach. Hence, there are many challenges in building ASR for languages that have limited data available.The main aim of this thesis is to investigate the effects of using data from closely-related languages to build ASR for low-resource languages in Malaysia. Past studies have shown that cross-lingual and multilingual methods could improve performance of low-resource ASR. In this thesis, we try to answer several questions concerning these approaches: How do we know which language is beneficial for our low-resource language? How does the relationship between source and target languages influence speech recognition performance? Is pooling language data an optimal approach for multilingual strategy?Our case study is Iban, an under-resourced language spoken in Borneo island. We study the effects of using data from Malay, a local dominant language which is close to Iban, for developing Iban ASR under different resource constraints. We have proposed several approaches to adapt Malay data to obtain pronunciation and acoustic models for Iban speech.Building a pronunciation dictionary from scratch is time consuming, as one needs to properly define the sound units of each word in a vocabulary. We developed a semi-supervised approach to quickly build a pronunciation dictionary for Iban. It was based on bootstrapping techniques for improving Malay data to match Iban pronunciations.To increase the performance of low-resource acoustic models we explored two acoustic modelling techniques, the Subspace Gaussian Mixture Models (SGMM) and Deep Neural Networks (DNN). We performed cross-lingual strategies using both frameworks for adapting out-of-language data to Iban speech. Results show that using Malay data is beneficial for increasing the performance of Iban ASR. We also tested SGMM and DNN to improve low-resource non-native ASR. We proposed a fine merging strategy for obtaining an optimal multi-accent SGMM. In addition, we developed an accent-specific DNN using native speech data. After applying both methods, we obtained significant improvements in ASR accuracy. From our study, we observe that using SGMM and DNN for cross-lingual strategy is effective when training data is very limited
Bücher zum Thema "Low-Resourced language"
Multilingual processing in eastern and southern EU languages: Low-resourced technologies and translation. Newcastle upon Tyne, UK: Cambridge Scholars Publishing, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Low-Resourced language"
Pattnaik, Sagarika, und Ajit Kumar Nayak. „An Automatic Summarizer for a Low-Resourced Language“. In Advances in Intelligent Systems and Computing, 285–95. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1081-6_24.
Der volle Inhalt der QuelleMbaye, Derguene, Moussa Diallo und Thierno Ibrahima Diop. „Low-Resourced Machine Translation for Senegalese Wolof Language“. In Proceedings of Eighth International Congress on Information and Communication Technology, 243–55. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3236-8_19.
Der volle Inhalt der QuelleRögnvaldsson, Eiríkur. „Language Report Icelandic“. In European Language Equality, 159–62. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28819-7_21.
Der volle Inhalt der QuelleAdda-Decker, Martine, Lori Lamel, Gilles Adda und Thomas Lavergne. „A First LVCSR System for Luxembourgish, a Low-Resourced European Language“. In Human Language Technology Challenges for Computer Science and Linguistics, 479–90. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14120-6_39.
Der volle Inhalt der QuelleDatta, Goutam, Nisheeth Joshi und Kusum Gupta. „Analysis of Automatic Evaluation Metric on Low-Resourced Language: BERTScore vs BLEU Score“. In Speech and Computer, 155–62. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20980-2_14.
Der volle Inhalt der QuelleThandil, Rizwana Kallooravi, K. P. Mohamed Basheer und V. K. Muneer. „A Multi-feature Analysis of Accented Multisyllabic Malayalam Words—a Low-Resourced Language“. In Lecture Notes in Networks and Systems, 243–51. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1203-2_21.
Der volle Inhalt der QuelleThandil, Rizwana Kallooravi, K. P. Mohamed Basheer und V. K. Muneer. „End-to-End Unified Accented Acoustic Model for Malayalam-A Low Resourced Language“. In Communications in Computer and Information Science, 346–54. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-33231-9_25.
Der volle Inhalt der QuelleBani, Rkia, Samir Amri, Lahbib Zenkouar und Zouhair Guennoun. „Part of Speech Tagging of Amazigh Language as a Very Low-Resourced Language: Particularities and Challenges“. In Artificial Intelligence and Industrial Applications, 172–82. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43520-1_15.
Der volle Inhalt der QuelleAnagha, H. M., Karthik Sairam, Janya Mahesh und H. R. Mamatha. „Paraphrase Generation and Deep Learning Models for Paraphrase Detection in a Low-Resourced Language: Kannada“. In Advances in Data-Driven Computing and Intelligent Systems, 283–93. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9531-8_23.
Der volle Inhalt der QuelleThandil, Rizwana Kallooravi, K. P. Mohamed Basheer und V. K. Muneer. „Deep Spectral Feature Representations Via Attention-Based Neural Network Architectures for Accented Malayalam Speech—A Low-Resourced Language“. In Proceedings of Data Analytics and Management, 1–13. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6553-3_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Low-Resourced language"
Jayakody, Ravindu, und Gihan Dias. „Performance of Recent Large Language Models for a Low-Resourced Language“. In 2024 International Conference on Asian Language Processing (IALP), 162–67. IEEE, 2024. http://dx.doi.org/10.1109/ialp63756.2024.10661169.
Der volle Inhalt der QuellePal, Vaishali, Evangelos Kanoulas, Andrew Yates und Maarten de Rijke. „Table Question Answering for Low-resourced Indic Languages“. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 75–92. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.emnlp-main.5.
Der volle Inhalt der QuelleMasethe, Mosima Anna, Hlaudi Daniel Masethe und Sunday O. Ojo. „Context-Based Question Answering Using Large Language BERT Variant Models for Low Resourced Sesotho sa Leboa Language“. In 2024 4th International Multidisciplinary Information Technology and Engineering Conference (IMITEC), 507–13. IEEE, 2024. https://doi.org/10.1109/imitec60221.2024.10850997.
Der volle Inhalt der QuelleDong, Lukuan, Donghong Qin, Fengbo Bai, Fanhua Song, Yan Liu, Chen Xu und Zhijian Ou. „Low-Resourced Speech Recognition for Iu Mien Language via Weakly-Supervised Phoneme-Based Multilingual Pretraining“. In 2024 IEEE 14th International Symposium on Chinese Spoken Language Processing (ISCSLP), 264–68. IEEE, 2024. https://doi.org/10.1109/iscslp63861.2024.10800186.
Der volle Inhalt der QuelleZhang, Jiajie, Shulin Cao, Linmei Hu, Ling Feng, Lei Hou und Juanzi Li. „KB-Plugin: A Plug-and-play Framework for Large Language Models to Induce Programs over Low-resourced Knowledge Bases“. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 2868–82. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.emnlp-main.168.
Der volle Inhalt der QuelleMasethe, Hlaudi Daniel, Lawrence M. Mothapo, Sunday O. Ojo, Pius A. Owolawi, Mosima Anna Masethe und Fausto Giunchigilia. „Machine Translation for Morphologically Rich Low-Resourced South African Languages“. In 2024 4th International Multidisciplinary Information Technology and Engineering Conference (IMITEC), 71–78. IEEE, 2024. https://doi.org/10.1109/imitec60221.2024.10850972.
Der volle Inhalt der QuelleAbisado, Mideth B., Maria Luisa G. Bautista, Marilen F. Pacis, Joseph Marvin R. Imperial, Ramon L. Rodriguez, Bernie S. Fabito, Jean V. Malolos, Mico C. Magtira und Mariecar G. Alfon. „RespiratoryPH: Empowering Low-Resourced Languages Through Multilingual and Multi-Labeled Social Media Dataset Towards Intelligent Public Health Disease Surveillance“. In 2024 IEEE International Conference on Progress in Informatics and Computing (PIC), 1–6. IEEE, 2024. https://doi.org/10.1109/pic62406.2024.10892651.
Der volle Inhalt der QuelleGupta, Akshat. „On Building Spoken Language Understanding Systems for Low Resourced Languages“. In Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology. Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.sigmorphon-1.1.
Der volle Inhalt der QuelleH M, Anagha, Karthik Sairam, Janya Mahesh und Mamatha H R. „Paraphrase Detection in a Low Resourced Language: Kannada“. In 2023 IEEE 8th International Conference for Convergence in Technology (I2CT). IEEE, 2023. http://dx.doi.org/10.1109/i2ct57861.2023.10126391.
Der volle Inhalt der QuelleIstván, Varga, und Yokoyama Shoichi. „Bilingual dictionary generation for low-resourced language pairs“. In the 2009 Conference. Morristown, NJ, USA: Association for Computational Linguistics, 2009. http://dx.doi.org/10.3115/1699571.1699625.
Der volle Inhalt der Quelle