Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Low-rank adaptation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Low-rank adaptation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Low-rank adaptation"
Yang, Weiqi, und Michael Spece. „Implicit Adaptation to Low Rank Structure in Online Learning“. International Journal of Machine Learning and Computing 11, Nr. 5 (September 2021): 339–44. http://dx.doi.org/10.18178/ijmlc.2021.11.5.1058.
Der volle Inhalt der QuelleChen, Yanran. „A concise analysis of low-rank adaptation“. Applied and Computational Engineering 42, Nr. 1 (23.02.2024): 76–82. http://dx.doi.org/10.54254/2755-2721/42/20230688.
Der volle Inhalt der QuelleFilatov, N., und M. Kindulov. „Low Rank Adaptation for Stable Domain Adaptation of Vision Transformers“. Optical Memory and Neural Networks 32, S2 (28.11.2023): S277—S283. http://dx.doi.org/10.3103/s1060992x2306005x.
Der volle Inhalt der QuelleXu, Bingrong, Jianhua Yin, Cheng Lian, Yixin Su und Zhigang Zeng. „Low-Rank Optimal Transport for Robust Domain Adaptation“. IEEE/CAA Journal of Automatica Sinica 11, Nr. 7 (Juli 2024): 1667–80. http://dx.doi.org/10.1109/jas.2024.124344.
Der volle Inhalt der QuelleHu, Yahao, Yifei Xie, Tianfeng Wang, Man Chen und Zhisong Pan. „Structure-Aware Low-Rank Adaptation for Parameter-Efficient Fine-Tuning“. Mathematics 11, Nr. 20 (17.10.2023): 4317. http://dx.doi.org/10.3390/math11204317.
Der volle Inhalt der QuelleLi, Wen, Zheng Xu, Dong Xu, Dengxin Dai und Luc Van Gool. „Domain Generalization and Adaptation Using Low Rank Exemplar SVMs“. IEEE Transactions on Pattern Analysis and Machine Intelligence 40, Nr. 5 (01.05.2018): 1114–27. http://dx.doi.org/10.1109/tpami.2017.2704624.
Der volle Inhalt der QuelleJaech, Aaron, und Mari Ostendorf. „Low-Rank RNN Adaptation for Context-Aware Language Modeling“. Transactions of the Association for Computational Linguistics 6 (Dezember 2018): 497–510. http://dx.doi.org/10.1162/tacl_a_00035.
Der volle Inhalt der QuelleRuff, Douglas A., Cheng Xue, Lily E. Kramer, Faisal Baqai und Marlene R. Cohen. „Low rank mechanisms underlying flexible visual representations“. Proceedings of the National Academy of Sciences 117, Nr. 47 (23.11.2020): 29321–29. http://dx.doi.org/10.1073/pnas.2005797117.
Der volle Inhalt der QuelleJeong, Y., und H. S. Kim. „Speaker adaptation using generalised low rank approximations of training matrices“. Electronics Letters 46, Nr. 10 (2010): 724. http://dx.doi.org/10.1049/el.2010.0466.
Der volle Inhalt der QuelleKim, Juhyeong, Gyunyeop Kim und Sangwoo Kang. „Lottery Rank-Pruning Adaptation Parameter Efficient Fine-Tuning“. Mathematics 12, Nr. 23 (28.11.2024): 3744. http://dx.doi.org/10.3390/math12233744.
Der volle Inhalt der QuelleDissertationen zum Thema "Low-rank adaptation"
Grativol, Ribeiro Lucas. „Neural network compression in the context of federated learning and edge devices“. Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0444.
Der volle Inhalt der QuelleFederated learning is a collaborative, decentralized machine learning framework driven by growing concerns about data privacy. By shifting model training to local nodes and keeping data local, it enables more privacy-conscious training. However, this approach imposes additional communication and computation overhead on those who adopt it. In this manuscript, we examine the key challenges in federated learning and propose solutions to increase efficiency and reduce hardware requirements. Specifically, we explore classic compression techniques, such as pruning, and low-rank approximations to lower the costs associated with federated learning. For scenarios where participants have limited communication capabilities, we introduce a co-design methodology for an embedded few-shot learning algorithm. Our proposed solution integrates hardware constraints into a deployment pipeline for FPGA platforms, resulting in a low-latency algorithm that can also be leveraged to implement post-federated learning models
Breloy, Arnaud. „Algorithmes d’estimation et de détection en contexte hétérogène rang faible“. Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLN021/document.
Der volle Inhalt der QuelleOne purpose of array processing is the detection and location of a target in a noisy environment. In most cases (as RADAR or active SONAR), statistical properties of the noise, especially its covariance matrix, have to be estimated using i.i.d. samples. Within this context, several hypotheses are usually made: Gaussian distribution, training data containing only noise, perfect hardware. Nevertheless, it is well known that a Gaussian distribution doesn’t provide a good empirical fit to RADAR clutter data. That’s why noise is now modeled by elliptical process, mainly Spherically Invariant Random Vectors (SIRV). In this new context, the use of the SCM (Sample Covariance Matrix), a classical estimate of the covariance matrix, leads to a loss of performances of detectors/estimators. More efficient estimators have been developed, such as the Fixed Point Estimator and M-estimators.If the noise is modeled as a low-rank clutter plus white Gaussian noise, the total covariance matrix is structured as low rank plus identity. This information can be used in the estimation process to reduce the number of samples required to reach acceptable performance. Moreover, it is possible to estimate the basis vectors of the clutter-plus-noise orthogonal subspace rather than the total covariance matrix of the clutter, which requires less data and is more robust to outliers. The orthogonal projection to the clutter plus noise subspace is usually calculated from an estimatd of the covariance matrix. Nevertheless, the state of art does not provide estimators that are both robust to various distributions and low rank structured.In this Thesis, we therefore develop new estimators that are fitting the considered context, to fill this gap. The contributions are following three axes :- We present a precise statistical model : low rank heterogeneous sources embedded in a white Gaussian noise.We express the maximum likelihood estimator for this context.Since this estimator has no closed form, we develop several algorithms to reach it effitiently.- For the considered context, we develop direct clutter subspace estimators that are not requiring an intermediate Covariance Matrix estimate.- We study the performances of the proposed methods on a Space Time Adaptive Processing for airborne radar application. Tests are performed on both synthetic and real data
Combernoux, Alice. „Détection et filtrage rang faible pour le traitement d'antenne utilisant la théorie des matrices aléatoires en grandes dimensions“. Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLC016/document.
Der volle Inhalt der QuelleNowadays, more and more applications deal with increasing dimensions. Thus, it seems relevant to exploit the appropriated tools as the random matrix theory in the large dimensional regime. More particularly, in the specific array processing applications as the STAP and MIMO-STAP radar applications, we were interested in the treatment of a signal of interest corrupted by an additive noise composed of a low rang noise and a white Gaussian. Therefore, the aim of this thesis is to study the low rank filtering and detection (function of projectors) in the large dimensional regime for array processing with random matrix theory tools.This thesis has three main contributions in the context of asymptotic analysis of projector functionals. Thus, the large dimensional regime first allows to determine an approximation/prediction of theoretical non asymptotic performance, much more precise than the literature in the classical asymptotic regime (when the number of estimation data tends to infinity at a fixed dimension). Secondly, two new low rank adaptive filters and detectors have been proposed and it has been shown that they have better performance as a function of the system parameters, in terms of SINR loss, false alarm probability and detection probability. Finally, the results have been validated on a jamming application and have been secondly applied to the STAP and sparse MIMO-STAP processings. Hence, the study highlighted a noticeable difference with the jamming application, related to the covariance matrix models concerned by this thesis
Buchteile zum Thema "Low-rank adaptation"
Raab, Christoph, und Frank-Michael Schleif. „Low-Rank Subspace Override for Unsupervised Domain Adaptation“. In Lecture Notes in Computer Science, 132–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58285-2_10.
Der volle Inhalt der QuelleBenaglia, Riccardo, Angelo Porrello, Pietro Buzzega, Simone Calderara und Rita Cucchiara. „Trajectory Forecasting Through Low-Rank Adaptation of Discrete Latent Codes“. In Lecture Notes in Computer Science, 236–51. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78444-6_16.
Der volle Inhalt der QuelleFang, Zhengyi, Yue Wang, Ran Yi und Lizhuang Ma. „Dropout Mixture Low-Rank Adaptation for Visual Parameters-Efficient Fine-Tuning“. In Lecture Notes in Computer Science, 369–86. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72667-5_21.
Der volle Inhalt der QuelleParanjape, Jay N., Shameema Sikder, S. Swaroop Vedula und Vishal M. Patel. „Low-Rank Adaptation of Segment Anything Model for Surgical Scene Segmentation“. In Lecture Notes in Computer Science, 187–202. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78198-8_13.
Der volle Inhalt der QuelleCappelletti, Silvia, Lorenzo Baraldi, Federico Cocchi, Marcella Cornia, Lorenzo Baraldi und Rita Cucchiara. „Adapt to Scarcity: Few-Shot Deepfake Detection via Low-Rank Adaptation“. In Lecture Notes in Computer Science, 111–26. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78305-0_8.
Der volle Inhalt der QuellePark, Dongwon, Hayeon Kim und Se Young Chun. „Contribution-Based Low-Rank Adaptation with Pre-training Model for Real Image Restoration“. In Lecture Notes in Computer Science, 87–105. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-73039-9_6.
Der volle Inhalt der QuelleLotey, Taveena, Aman Verma und Partha Pratim Roy. „EEG-Based Mental Imagery Task Adaptation via Ensemble of Weight-Decomposed Low-Rank Adapters“. In Lecture Notes in Computer Science, 309–24. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78195-7_21.
Der volle Inhalt der QuelleChari, Martin Munashe, Hamisai Hamandawana und Leocadia Zhou. „Socioeconomically Informed Use of Geostatistics to Track Adaptation of Resource-Poor Communities to Climate Change“. In African Handbook of Climate Change Adaptation, 1555–81. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_122.
Der volle Inhalt der QuelleWang, Meng, Tian Lin, Ting Xu, Ke Zou, Haoyu Chen, Huazhu Fu und Ching-Yu Cheng. „Enhancing Large Foundation Models to Identify Fundus Diseases Based on Contrastive Enhanced Low-Rank Adaptation Prompt“. In Lecture Notes in Computer Science, 157–66. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-73119-8_16.
Der volle Inhalt der QuelleZhu, Vince, Zhanghexuan Ji, Dazhou Guo, Puyang Wang, Yingda Xia, Le Lu, Xianghua Ye, Wei Zhu und Dakai Jin. „Low-Rank Continual Pyramid Vision Transformer: Incrementally Segment Whole-Body Organs in CT with Light-Weighted Adaptation“. In Lecture Notes in Computer Science, 371–81. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72111-3_35.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Low-rank adaptation"
Wu, Taiqiang, Jiahao Wang, Zhe Zhao und Ngai Wong. „Mixture-of-Subspaces in Low-Rank Adaptation“. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 7880–99. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.emnlp-main.450.
Der volle Inhalt der QuelleGrativol, Lucas, Mathieu Léonardon, Guillaume Muller, Virginie Fresse und Matthieu Arzel. „FLoCoRA: Federated Learning Compression with Low-Rank Adaptation“. In 2024 32nd European Signal Processing Conference (EUSIPCO), 1786–90. IEEE, 2024. http://dx.doi.org/10.23919/eusipco63174.2024.10715461.
Der volle Inhalt der QuelleLiang, Yan-Shuo, und Wu-Jun Li. „InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning“. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 23638–47. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.02231.
Der volle Inhalt der QuelleZanella, Maxime, und Ismail Ben Ayed. „Low-Rank Few-Shot Adaptation of Vision-Language Models“. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1593–603. IEEE, 2024. http://dx.doi.org/10.1109/cvprw63382.2024.00166.
Der volle Inhalt der QuelleFerreira-Caballero, Sebastián, Diego P. Pinto-Roa, José Luis Vázquez Noguera, Jordan Ayala, Pedro E. Gardel-Sotomayor und Pastor Pérez-Estigarribia. „Low-Rank Adaptation Applied to Multiclass Diabetic Retinopathy Classification“. In 2024 L Latin American Computer Conference (CLEI), 1–9. IEEE, 2024. http://dx.doi.org/10.1109/clei64178.2024.10700586.
Der volle Inhalt der QuelleLi, Yinqiao, Linqi Song und Hanxu Hou. „LoRAN: Improved Low-Rank Adaptation by a Non-Linear Transformation“. In Findings of the Association for Computational Linguistics: EMNLP 2024, 3134–43. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-emnlp.177.
Der volle Inhalt der QuelleZhang, Yiwei, Kun Li, Liang Yuan, Jiawen Cheng, Yunquan Zhang, Ting Cao und Mao Yang. „LoRAStencil: Low-Rank Adaptation of Stencil Computation on Tensor Cores“. In SC24: International Conference for High Performance Computing, Networking, Storage and Analysis, 1–17. IEEE, 2024. https://doi.org/10.1109/sc41406.2024.00059.
Der volle Inhalt der QuelleAgiza, Ahmed, Marina Neseem und Sherief Reda. „MTLoRA: A Low-Rank Adaptation Approach for Efficient Multi-Task Learning“. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 16196–205. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.01533.
Der volle Inhalt der QuelleLi, Linfeng, und Lei Guo. „Dynamic Low-Rank Adaptation Based Pruning Algorithm for Large Language Models“. In 2024 7th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), 1094–99. IEEE, 2024. https://doi.org/10.1109/prai62207.2024.10826600.
Der volle Inhalt der QuelleYang, Peng, Hong Ying, Jianxin Duan, Linyue Shi und Chen Yang. „Quantized Low-Rank Adaptation Based Parameter-efficient Tuning for Low-resource Visual Question Answering“. In 2024 6th International Conference on Electronic Engineering and Informatics (EEI), 1318–22. IEEE, 2024. http://dx.doi.org/10.1109/eei63073.2024.10696314.
Der volle Inhalt der Quelle