Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Low inertia power systems“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Low inertia power systems" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Low inertia power systems"
Mujcinagic, Alija, Mirza Kusljugic und Emir Nukic. „Wind Inertial Response Based on the Center of Inertia Frequency of a Control Area“. Energies 13, Nr. 23 (24.11.2020): 6177. http://dx.doi.org/10.3390/en13236177.
Der volle Inhalt der QuelleWorsnopp, Tom, Michael Peshkin, Kevin Lynch und J. Edward Colgate. „Controlling the Apparent Inertia of Passive Human-Interactive Robots“. Journal of Dynamic Systems, Measurement, and Control 128, Nr. 1 (14.11.2005): 44–52. http://dx.doi.org/10.1115/1.2168165.
Der volle Inhalt der QuelleNguyen, Ha Thi, Guangya Yang, Arne Hejde Nielsen und Peter Højgaard Jensen. „Challenges and Research Opportunities of Frequency Control in Low Inertia Systems“. E3S Web of Conferences 115 (2019): 02001. http://dx.doi.org/10.1051/e3sconf/201911502001.
Der volle Inhalt der QuelleKosmecki, Michał, Robert Rink, Anna Wakszyńska, Roberto Ciavarella, Marialaura Di Somma, Christina N. Papadimitriou, Venizelos Efthymiou und Giorgio Graditi. „A Methodology for Provision of Frequency Stability in Operation Planning of Low Inertia Power Systems“. Energies 14, Nr. 3 (31.01.2021): 737. http://dx.doi.org/10.3390/en14030737.
Der volle Inhalt der QuelleAdrees, Atia, J. V. Milanović und Pierluigi Mancarella. „Effect of inertia heterogeneity on frequency dynamics of low-inertia power systems“. IET Generation, Transmission & Distribution 13, Nr. 14 (23.07.2019): 2951–58. http://dx.doi.org/10.1049/iet-gtd.2018.6814.
Der volle Inhalt der QuelleHeylen, Evelyn, Fei Teng und Goran Strbac. „Challenges and opportunities of inertia estimation and forecasting in low-inertia power systems“. Renewable and Sustainable Energy Reviews 147 (September 2021): 111176. http://dx.doi.org/10.1016/j.rser.2021.111176.
Der volle Inhalt der QuelleBarrueto Guzmán, Aldo, Héctor Chávez Oróstica und Karina A. Barbosa. „Stability Analysis: Two-Area Power System with Wind Power Integration“. Processes 11, Nr. 8 (18.08.2023): 2488. http://dx.doi.org/10.3390/pr11082488.
Der volle Inhalt der QuelleChae, Dong-Ju, und Kyung Soo Kook. „Inertia Energy-Based Required Capacity Calculation of BESS for Achieving Carbon Neutrality in Korean Power System“. Energies 17, Nr. 8 (12.04.2024): 1843. http://dx.doi.org/10.3390/en17081843.
Der volle Inhalt der QuelleZhou, Jinghua, und Hao Yan. „Research on Parallel Control Strategy of Grid-forming of Power Conversion System“. Journal of Physics: Conference Series 2592, Nr. 1 (01.09.2023): 012075. http://dx.doi.org/10.1088/1742-6596/2592/1/012075.
Der volle Inhalt der QuelleWang, Feng, Lizheng Sun, Zhang Wen und Fang Zhuo. „Overview of Inertia Enhancement Methods in DC System“. Energies 15, Nr. 18 (13.09.2022): 6704. http://dx.doi.org/10.3390/en15186704.
Der volle Inhalt der QuelleDissertationen zum Thema "Low inertia power systems"
Qureshi, Fassahat Ullah. „Fast frequency response services for low inertia power systems“. Thesis, The University of Sydney, 2019. http://hdl.handle.net/2123/20764.
Der volle Inhalt der QuelleNiemelä, Elvira, und Lucas Wallhager. „Fast Power Support of Electrical Batteries in Future Low Inertia Power Systems“. Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281935.
Der volle Inhalt der QuelleFör att skapa mer hållbara kraftsystem, men även uppnå miljömål, är fortsatt integrering av förnyelsebara energikällor viktigt. Dock kan detta resultera i ett kraftsystem som är mer sårbart mot störningar, då förnyelsebara energikällor inte bidrar till systemets svängmassa. Ett kraftsystems förmåga att möta störningar är direkt relaterad till svängmassan i systemet. Detta är på grund av att systemet använder kinetisk energi från roterande maskiner, deras svängmassa, för att återställa balans mellan produktion och konsumtion efter en störning. Dock orsakar detta en avvikelse hos systemets frekvens, som måste hållas inom vissa gränser, annars kan det i värsta fall leda till strömavbrott. Primärreglering stabiliserar frekvensen först dussin sekunder efter en störning, därför är det svängmassan som spelar den avgörande rollen för att kontollera den initiella avvikelsen. En möjlig lösning för att möta störningar i ett kraftsystem med mindre svängmassa är att använda elektriska batterier som snabbt kraftstöd, genom att tillföra effekt till systemet vid behov. Detta projekt syftar till att undersöka dynamiken hos primärregleringen men även huruvida batterier kan användas som snabbt kraftstöd. Olika parametrar hos batterierna analyseras även. Projektet görs genom en fallstudie av en model av ett kraftsystem i Simulink och Matlab. Andra aspekter, så som hållbarhet, kostnadseffektivitet samt framtida forskning diskuteras.
Alahmad, Bashar. „The role of location of low inertia in power systems“. Thesis, Uppsala universitet, Institutionen för elektroteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444863.
Der volle Inhalt der QuelleMOSCA, CARMELO. „Methodologies for Frequency Stability Assessment in Low Inertia Power Systems“. Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2895393.
Der volle Inhalt der QuelleSchmitt, Andreas Joachim. „Power System Parameter Estimation for Enhanced Grid Stability Assessment in Systems with Renewable Energy Sources“. Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/83459.
Der volle Inhalt der QuellePh. D.
Dalal, Milap. „Low noise, low power interface circuits and systems for high frequency resonant micro-gyroscopes“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44861.
Der volle Inhalt der QuelleZhang, Shengqi. „Investigating the impacts of renewable energy generators and energy storage systems on power system frequency response“. Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/94463/1/Shengqi_Zhang_Thesis.pdf.
Der volle Inhalt der QuelleKelada, Fadi Sameh Aziz. „Étude des dynamiques et de la stabilité des réseaux électriques faible inertie avec une forte pénétration de ressources renouvelables“. Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALT065.
Der volle Inhalt der QuellePower systems are evolving significantly due to economic, geopolitical, and environmental factors, notably the increasing integration of Renewable Energy Sources (RES) interfaced through power electronic converters, known as Inverter-Based Resources (IBR). This shift from synchronous machine (SM)-dominated systems to IBR-dominated systems introduces challenges such as reduced inertia, intermittency, and stability issues. Traditional stability analysis and modeling techniques, which assume slower dynamics inherent in SMs, are inadequate for the fast dynamics of IBRs. The emerging dominance of IBRs necessitates the development of detailed Electromagnetic Transient (EMT) models, which are computationally intensive but essential for capturing the fast dynamics of modern power systems. Existing stability classification frameworks, historically based on SM-dominated systems, are being revised to incorporate IBR influences, introducing new stability categories like Converter-Driven Stability (CDS). This work investigates novel insights into the interactions between SMs, IBR unit dynamics, and network dynamics that have been overlooked in the literature. It provides a comprehensive framework that is open-source and adaptable for generic power system topologies, allowing for scalable results and analyses. Furthermore, the proposed framework is utilized to determine optimal allocations of virtual inertia and damping in low inertia power systems to enhance frequency stability metrics
El-Damak, Dina Reda. „Power management circuits for ultra-low power systems“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99821.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 137-145).
Power management circuits perform a wide range of vital tasks for electronic systems including DC-DC conversion, energy harvesting, battery charging and protection as well as dynamic voltage scaling. The impact of the efficiency of the power management circuits is highly profound for ultra-low power systems such as implantable, ingestible or wearable devices. Typically the size of the system for such applications does not allow the integration of a large energy storage device. Therefore, extreme energy efficiency of the power management circuits is critical for extended operation time. In addition, flexibility and small form factor are desirable to conform to the human body and reduce the system's over all size. Thus, this thesis presents highly efficient and miniature power converters for multiple applications using architecture and circuit level optimization as well as emerging technologies. The first part presents a power management IC (PMIC) featuring an integrated reconfigurable switched capacitor DC-DC converter using on-chip ferroelectric caps in 130 nm CMOS process. Digital pulse frequency modulation and gain selection circuits allow for efficient output voltage regulation. The converter utilizes four gain settings (1, 2/3, 1/2, 1/3) to support an output voltage of 0.4 V to 1.1 V from 1.5 V input while delivering load current of 20 [mu]A to 1 mA. The PMIC occupies 0.366 mm² and achieves a peak efficiency of 93% including the control circuit overhead at a load current of 500 [mu]A. The second part presents a solar energy harvesting system with 3.2 nW overall quiescent power. The chip integrates self-startup, battery management, supplies 1 V regulated rail with a single inductor and supports power range of 10 nW to 1 [mu]W. The control circuit is designed in an asynchronous fashion that scales the effective switching frequency of the converter with the level of the power transferred. The ontime of the converter switches adapts dynamically to the input and output voltages for peak-current control and zero-current switching. The system has been implemented in 180 nm CMOS process. For input power of 500 nW, the proposed system achieves an efficiency of 82%, including the control circuit overhead, while charging a battery at 3 V from 0.5 V input. The third part focuses on developing an energy harvesting system for an ingestible device using gastric acid. An integrated switched capacitor DC-DC converter is designed to efficiently power sensors and RF transmitter with a 2.5 V regulated voltage rail. A reconfigurable Dickson topology with four gain settings (3, 4, 6, 10) is used to support a wide input voltage range from 0.3 V to 1.1 V. The converter is designed in 65 nm CMOS process and achieves a peak efficiency of 80% in simulation for output power of 2 [mu]W. The last part focuses on flexible circuit design using Molybdenum Disulfide (MoS₂), one of the emerging 2D materials. A computer-aided design flow is developed for MoS₂-based circuits supporting device modeling, circuit simulation and parametric cell-based layout - which paves the road for the realization of large-scale flexible MoS₂ systems.
by Dina Reda El-Damak.
Ph. D.
Maalouf, Divine. „Contribution to nonlinear adaptive control of low inertia underwater robots“. Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20196/document.
Der volle Inhalt der QuelleUnderwater vehicles have gained an increased interest in the last decades given the multiple tasks they can accomplish in various fields, ranging from scientific to industrial and military applications. In this thesis, we are particularly interested in the category of vehicles having a high power to weight ratio. Different challenges in autonomous control of such highly unstable systems arise from the inherent nonlinearities and the time varyingbehavior of their dynamics. These challenges can be increased by the low inertia of this class of vehicles combined with their powerful actuation. A self tuning controller is therefore required in order to avoid any performance degradation during a specific mission. The closed-loop system is expected to compensate for different kinds of disturbances or changes in the model parameters. To solve this problem, we propose in this work the design,analysis and experimental validation of different control schemes on an underwater vehicle. Classical methods are initially proposed, namely the PID controller and the nonlinear adaptive state feedback (NASF) one, followed by two more advanced schemes based on the recently developed L1 adaptive controller. This last method stands out among the other developed ones in its particular architecture where robustness and adaptation are decoupled. In this thesis, the original L1 adaptive controller has been designed and successfullyvalidated then an extended version of it is proposed in order to deal with the observed time lags occurring in presence of a varying reference trajectory. The stability of this latter controller is then analysed and real-time experimental results for different operating conditions are presented and discussed for each proposed controller, assessing their performance and robustness
Bücher zum Thema "Low inertia power systems"
Arland, Richard H. Low power communications. Lake Geneva, WI, U.S.A: Tiare Publications, 1992.
Den vollen Inhalt der Quelle findenRabaey, Jan M. Low Power Design Methodologies. Boston, MA: Springer US, 1996.
Den vollen Inhalt der Quelle findenPal, Ajit. Low-Power VLSI Circuits and Systems. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-1937-8.
Der volle Inhalt der QuelleJ, Sarmiento Charles, und United States. National Aeronautics and Space Administration., Hrsg. Low power arcjet performance. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Den vollen Inhalt der Quelle findenOtte, Rob. Low-Power Wireless Infrared Communications. Boston, MA: Springer US, 1999.
Den vollen Inhalt der Quelle findenChandrakasan, Anantha P. Low Power Digital CMOS Design. Boston, MA: Springer US, 1995.
Den vollen Inhalt der Quelle findenOtte, Rob. Low-power wireless infrared communications. Boston, MA: Kluwer Academic Publishers, 1999.
Den vollen Inhalt der Quelle findenSilvano, Cristina. Low Power Networks-on-Chip. Boston, MA: Springer Science+Business Media, LLC, 2011.
Den vollen Inhalt der Quelle findenBenini, Luca, Mahmut Kandemir und J. Ramanujam, Hrsg. Compilers and Operating Systems for Low Power. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9292-5.
Der volle Inhalt der Quelle1967-, Benini Luca, Kandemir Mahmut und Ramanujam J, Hrsg. Compilers and operating systems for low power. Boston: Kluwer Academic Publishers, 2003.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Low inertia power systems"
Magdy, Gaber, Gaber Shabib, Adel A. Elbaset und Yasunori Mitani. „Dynamic Security Assessment of Low-inertia Microgrids Based on the Concept of Virtual Inertia Control“. In Renewable Power Systems Dynamic Security, 59–87. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33455-0_4.
Der volle Inhalt der QuelleMagdy, Gaber, Gaber Shabib, Adel A. Elbaset und Yasunori Mitani. „A Comprehensive Digital Protection Scheme for Low-inertia Microgrids Considering High Penetration of Renewables“. In Renewable Power Systems Dynamic Security, 39–57. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33455-0_3.
Der volle Inhalt der QuelleSetiadi, Herlambang, Ismayahya Ridhan Mutiarso und Feby Ananta Sari. „Analysis of Virtual Inertia Control Implementation Based on Redox Flow Batteries for Frequency Stability in Low Inertia Power Systems“. In Advances in Engineering Research, 5–19. Dordrecht: Atlantis Press International BV, 2024. http://dx.doi.org/10.2991/978-94-6463-566-9_2.
Der volle Inhalt der QuelleDu, Pengwei. „System Inertia Trend and Critical Inertia“. In Power Electronics and Power Systems, 199–222. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28639-1_7.
Der volle Inhalt der QuelleKerdphol, Thongchart, Fathin Saifur Rahman, Masayuki Watanabe und Yasunori Mitani. „Synthesis of Robust Virtual Inertia Control“. In Power Systems, 203–26. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57961-6_8.
Der volle Inhalt der QuelleBilbao, Javier, Eugenio Bravo, Carolina Rebollar, Concepcion Varela und Olatz Garcia. „Virtual Power Plants and Virtual Inertia“. In Power Systems, 87–113. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23723-3_5.
Der volle Inhalt der QuelleKerdphol, Thongchart, Fathin Saifur Rahman, Masayuki Watanabe und Yasunori Mitani. „Multiple-Virtual Inertia Synthesis for Interconnected Systems“. In Power Systems, 91–110. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57961-6_4.
Der volle Inhalt der QuelleKerdphol, Thongchart, Fathin Saifur Rahman, Masayuki Watanabe und Yasunori Mitani. „Model Predictive Control for Virtual Inertia Synthesis“. In Power Systems, 141–66. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57961-6_6.
Der volle Inhalt der QuelleKerdphol, Thongchart, Fathin Saifur Rahman, Masayuki Watanabe und Yasunori Mitani. „Fuzzy Logic Control for Virtual Inertia Synthesis“. In Power Systems, 167–201. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57961-6_7.
Der volle Inhalt der QuelleKerdphol, Thongchart, Fathin Saifur Rahman, Masayuki Watanabe und Yasunori Mitani. „An Overview of Virtual Inertia and Its Control“. In Power Systems, 1–11. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57961-6_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Low inertia power systems"
Hurtado, Manuel, Mohammad Jafarian, Taulant Kërçi, Simon Tweed, Marta Val Escudero, Eoin Kennedy und Federico Milano. „Stability Assessment of Low-Inertia Power Systems: A System Operator Perspective“. In 2024 IEEE Power & Energy Society General Meeting (PESGM), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/pesgm51994.2024.10688904.
Der volle Inhalt der QuelleColak, Ayse, Mohamed Abouyehia und Khaled Ahmed. „Resilience and Frequency Control in Low-Inertia Power Systems: Challenges and Solutions“. In 2024 13th International Conference on Renewable Energy Research and Applications (ICRERA), 1277–84. IEEE, 2024. https://doi.org/10.1109/icrera62673.2024.10815552.
Der volle Inhalt der QuelleSingh, Manohar. „Damping Enhancemnet for LFO in Electric Grid Hosting Low Inertia Power Generation“. In 2024 7th International Conference on Electric Power and Energy Conversion Systems (EPECS), 93–99. IEEE, 2024. https://doi.org/10.1109/epecs62845.2024.10805498.
Der volle Inhalt der QuelleSyahputra, Dede, Herlambang Setiadi, Agus Mukhlisin und Maulana Iqwan Habibi. „Analysis of Frequency Stability in Low Inertia Power Systems Using EV Charging Battery“. In 2024 International Seminar on Intelligent Technology and Its Applications (ISITIA), 542–47. IEEE, 2024. http://dx.doi.org/10.1109/isitia63062.2024.10667850.
Der volle Inhalt der QuelleAtallah, A., A. Hernandez und G. Varhegyi. „Power System Frequency Regulation in Low Inertia Systems“. In ADIPEC. SPE, 2023. http://dx.doi.org/10.2118/216959-ms.
Der volle Inhalt der QuelleXianyong Feng. „Dynamic balancing for low inertia power systems“. In 2013 IEEE Power & Energy Society General Meeting. IEEE, 2013. http://dx.doi.org/10.1109/pesmg.2013.6672566.
Der volle Inhalt der QuelleKërçi, Taulant, Manuel Hurtado, Mariglen Gjergji, Simon Tweed, Eoin Kennedy und Federico Milano. „Frequency Quality in Low-Inertia Power Systems“. In 2023 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2023. http://dx.doi.org/10.1109/pesgm52003.2023.10253411.
Der volle Inhalt der QuelleAluko, Anuoluwapo O., David G. Dorrell und Evans E. Ojo. „Inertia Emulation in Low Inertia Power Systems Considering Frequency Measurement Effects“. In 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). IEEE, 2021. http://dx.doi.org/10.1109/icecet52533.2021.9698697.
Der volle Inhalt der QuelleDag, Oben, und Behrooz Mirafzal. „On stability of islanded low-inertia microgrids“. In 2016 Clemson University Power Systems Conference (PSC). IEEE, 2016. http://dx.doi.org/10.1109/psc.2016.7462854.
Der volle Inhalt der QuelleToma, Lucian, Mihai Sanduleac, Stefan Andrei Baltac, Francesco Arrigo, Andrea Mazza, Ettore Bompard, Aysar Musa und Antonello Monti. „On the virtual inertia provision by BESS in low inertia power systems“. In 2018 IEEE International Energy Conference (ENERGYCON). IEEE, 2018. http://dx.doi.org/10.1109/energycon.2018.8398755.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Low inertia power systems"
Qiu, Qinru. Low Power Computing in Distributed Systems. Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ada450272.
Der volle Inhalt der QuellePolito, M. D., und B. Albert. Low power, constant-flow air pump systems. Office of Scientific and Technical Information (OSTI), Januar 1994. http://dx.doi.org/10.2172/10129016.
Der volle Inhalt der QuelleAshwood, A., und D. Bharathan. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production. Office of Scientific and Technical Information (OSTI), März 2011. http://dx.doi.org/10.2172/1009690.
Der volle Inhalt der QuelleSmith, Brian. Autonomous Distributed Systems - Application of Ultra Low Power Technology. Fort Belvoir, VA: Defense Technical Information Center, November 2002. http://dx.doi.org/10.21236/ada410355.
Der volle Inhalt der QuelleS.D. Vora. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems. Office of Scientific and Technical Information (OSTI), Februar 2003. http://dx.doi.org/10.2172/891045.
Der volle Inhalt der QuelleS.D. Vora. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/876469.
Der volle Inhalt der QuelleS. D. Vora. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems. Office of Scientific and Technical Information (OSTI), Februar 2008. http://dx.doi.org/10.2172/938956.
Der volle Inhalt der QuelleMcConnell, R., V. Garboushian, R. Gordon, D. Dutra, G. Kinsey, S. Geer, H. Gomez und C. Cameron. Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation. Office of Scientific and Technical Information (OSTI), März 2012. http://dx.doi.org/10.2172/1040623.
Der volle Inhalt der QuelleRanjram, Mike. Planar Transformer Systems for Modular Power Electronics in Long-Haul, Low-Cost PV Systems. Office of Scientific and Technical Information (OSTI), Juli 2024. http://dx.doi.org/10.2172/2452814.
Der volle Inhalt der QuelleCrosbie, R. E., J. J. Zenor, R. Bednar, D. Word und N. G. Hingorani. Low-Cost High-Speed Techniques for Real-Time Simulation of Power Electronic Systems. Fort Belvoir, VA: Defense Technical Information Center, Juni 2007. http://dx.doi.org/10.21236/ada485330.
Der volle Inhalt der Quelle