Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Low-Cost silicon“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Low-Cost silicon" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Low-Cost silicon"
Chatzakis, J., S. Hassan, E. Clark und M. Tatarakis. „A 1GHz Low-cost, Ultra Low-noise Preamplifier“. WSEAS TRANSACTIONS ON ELECTRONICS 11 (01.09.2020): 120–26. http://dx.doi.org/10.37394/232017.2020.11.15.
Der volle Inhalt der QuelleTamboli, Adele C., David C. Bobela, Ana Kanevce, Timothy Remo, Kirstin Alberi und Michael Woodhouse. „Low-Cost CdTe/Silicon Tandem Solar Cells“. IEEE Journal of Photovoltaics 7, Nr. 6 (November 2017): 1767–72. http://dx.doi.org/10.1109/jphotov.2017.2737361.
Der volle Inhalt der QuelleKhoury, H. J., C. A. Hazin, A. P. Mascarenhas und E. F. da Silva. „Low Cost Silicon Photodiode for Electron Dosimetry“. Radiation Protection Dosimetry 84, Nr. 1 (01.08.1999): 341–43. http://dx.doi.org/10.1093/oxfordjournals.rpd.a032751.
Der volle Inhalt der QuelleKress, A., R. Kuhn, P. Fath, G. P. Willeke und E. Bucher. „Low-cost back contact silicon solar cells“. IEEE Transactions on Electron Devices 46, Nr. 10 (1999): 2000–2004. http://dx.doi.org/10.1109/16.791988.
Der volle Inhalt der QuelleBurtescu, S., C. Parvulescu, F. Babarada und E. Manea. „The low cost multicrystalline silicon solar cells“. Materials Science and Engineering: B 165, Nr. 3 (Dezember 2009): 190–93. http://dx.doi.org/10.1016/j.mseb.2009.08.009.
Der volle Inhalt der QuelleHampel, Jonathan, Philipp Ehrenreich, Norbert Wiehl, Jens Volker Kratz und Stefan Reber. „HCl gas gettering of low-cost silicon“. physica status solidi (a) 210, Nr. 4 (14.01.2013): 767–70. http://dx.doi.org/10.1002/pssa.201200885.
Der volle Inhalt der QuelleKondo, Naoki, Mikinori Hotta und Tatsuki Ohji. „Low-Cost Silicon Nitride from β-Silicon Nitride Powder and by Low-Temperature Sintering“. International Journal of Applied Ceramic Technology 12, Nr. 2 (08.08.2013): 377–82. http://dx.doi.org/10.1111/ijac.12157.
Der volle Inhalt der QuelleMatsuura, Hideharu, Shungo Sakurai, Yuya Oda, Shinya Fukushima, Shohei Ishikawa, Akinobu Takeshita und Atsuki Hidaka. „Gated Silicon Drift Detector Fabricated from a Low-Cost Silicon Wafer“. Sensors 15, Nr. 5 (22.05.2015): 12022–33. http://dx.doi.org/10.3390/s150512022.
Der volle Inhalt der QuelleLo Faro, Maria, Antonio Leonardi, Dario Morganti, Barbara Fazio, Ciro Vasi, Paolo Musumeci, Francesco Priolo und Alessia Irrera. „Low Cost Fabrication of Si NWs/CuI Heterostructures“. Nanomaterials 8, Nr. 8 (25.07.2018): 569. http://dx.doi.org/10.3390/nano8080569.
Der volle Inhalt der QuelleRahali, F., S. Ansermet, J. Ardalan und D. Otter. „Low‐cost Integrated Silicon Sensors for Industrial Applications“. Microelectronics International 11, Nr. 3 (März 1994): 18–21. http://dx.doi.org/10.1108/eb044540.
Der volle Inhalt der QuelleDissertationen zum Thema "Low-Cost silicon"
Duran, Joshua. „Silicon-Based Infrared Photodetectors for Low-Cost Imaging Applications“. University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton155653478017603.
Der volle Inhalt der QuelleOrholor, Ayomanor Benedict. „The production of low-cost solar grade silicon from rice husk“. Thesis, Sheffield Hallam University, 2017. http://shura.shu.ac.uk/23502/.
Der volle Inhalt der QuellePrabhakar, Sandesh. „Algorithms and Low Cost Architectures for Trace Buffer-Based Silicon Debug“. Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/35931.
Der volle Inhalt der QuelleMaster of Science
Lai, Jiun-Hong. „Development of low-cost high-efficiency commercial-ready advanced silicon solar cells“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52234.
Der volle Inhalt der QuelleKrygowski, Thomas Wendell. „A novel simultaneous diffusion technology for low-cost, high-efficiency silicon solar cells“. Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/22973.
Der volle Inhalt der QuelleChen, Chia-Wei. „Low cost high efficiency screen printed solar cells on Cz and epitaxial silicon“. Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54968.
Der volle Inhalt der QuelleRyu, Kyung Sun. „Development of low-cost and high-efficiency commercial size n-type silicon solar cells“. Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53842.
Der volle Inhalt der QuelleBerrada, Sounni Amine. „Low cost manufacturing of light trapping features on multi-crystalline silicon solar cells : jet etching method and cost analysis“. Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61522.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 127-128).
An experimental study was conducted in order to determine low cost methods to improve the light trapping ability of multi-crystalline solar cells. We focused our work on improving current wet etching methods to achieve the desired light trapping features which consists in micro-scale trenches with parabolic cross-sectional profiles with a target aspect ratio of 1.0. The jet etching with a hard mask method, which consists in impinging a liquid mixture of hydrofluoric, nitric and acetic acids through the opening of hard mask, was developed. First, a computational fluid dynamics simulation was conducted to determine the desired jet velocity and angle to be used in our experiments. We find that using a jet velocity of 3 m/s and a jetting angle of 45° yields the necessary flow characteristics for etching high aspect ratio features. Second, we performed experiments to determine the effect of jet etching using a photo-resist mask and thermally grown silicon oxide mask on multiple silicon substrates : <100>, <110>, <111> and multi-crystalline silicon. Compared to a baseline of etching with no jet, we find that the jet etching process can improve the light trapping ability of the baseline features by improving their aspect ratio up to 65.2% and their light trapping ability up to 38.1%. The highest aspect ratio achieved using the jet etching process was 0.62. However, it must be noted that the repeatability of the results was not consistent: significant variations in the results of the same experiment occurred, making the jet etching process promising but difficult to control. Finally, we performed a cost analysis in order to determine the minimum efficiency that a jet etching process would have to achieve to be cost competitive and its corresponding features aspect ratio. We find that a minimum cell efficiency of 16.63% and feature aspect ratios of 0.57 are necessary for cost competitiveness with current solar cell manufacturing technology.
by Amine Berrada Sounni.
S.M.in Technology and Policy
S.M.
Statnikov, Konstantin [Verfasser]. „Towards Multi-Dimensional Terahertz Imaging Systems Based on Low-Cost Silicon Technologies / Konstantin Statnikov“. München : Verlag Dr. Hut, 2016. http://d-nb.info/1097818268/34.
Der volle Inhalt der QuelleLopez, Parra Marcelo. „The design, manufacture and testing of a low-cost cleanroom robot for handling silicon wafers“. Thesis, Cranfield University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260098.
Der volle Inhalt der QuelleBücher zum Thema "Low-Cost silicon"
Muller, J. C. Low cost implantation into silicon. Luxembourg: Commission of the European Communities, 1985.
Den vollen Inhalt der Quelle findenR, Levine Stanley, und United States. National Aeronautics and Space Administration., Hrsg. Low cost fabrication of silicon carbide based ceramics and fiber reinforced composites. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenAntoniadis, Homer. High efficiency, low cost solar cells manufactured using "Silicon Ink" on thin crystalline silicon wafers: October 2009 - November 2010. Golden, CO: National Renewable Energy Laboratory, 2011.
Den vollen Inhalt der Quelle findenRicaud, A. Implementation of low cost semicrystalline silicon solar cells process and characterization of solar grade polysilicon. Luxembourg: Commission of the European Communities, 1986.
Den vollen Inhalt der Quelle findenA, Neugroschel, und United States. National Aeronautics and Space Administration, Hrsg. Heavy doping effects in high efficiency silicon solar cells: Quarterly report for period covering January 1, 1986 - March 31, 1986. [Washington, DC: National Aeronautics and Space Administration, 1986.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Ultra-low-cost room temperature SiC thin films: Final report, NASA research grant no. NAG3-1828 for the period April 8, 1996 to September 30, 1996. [Cleveland, Ohio?]: The Center, 1997.
Den vollen Inhalt der Quelle findenLarsen, A. Nylandsted. Production of solar cells on the basis of low cost silicon by application of ion implantation and light-induced transient heating. Luxembourg: Commission of the European Communities, 1985.
Den vollen Inhalt der Quelle findenNational Aeronautics and Space Administration (NASA) Staff. Structure of Deformed Silicon and Implications for Low Cost Solar Cells. Independently Published, 2018.
Den vollen Inhalt der Quelle findenNational Aeronautics and Space Administration (NASA) Staff. Delayed Fracture of Silicon: Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low Cost Silicon Solar Array Project. Independently Published, 2018.
Den vollen Inhalt der Quelle findenNational Aeronautics and Space Administration (NASA) Staff. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites. Independently Published, 2018.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Low-Cost silicon"
Fraas, Lewis M. „Terrestrial Silicon Solar Cells Today“. In Low-Cost Solar Electric Power, 63–71. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07530-3_5.
Der volle Inhalt der QuelleFraas, Lewis M., und Mark J. O’Neill. „Terrestrial Silicon Solar Cells Today“. In Low-Cost Solar Electric Power, 61–69. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30812-3_5.
Der volle Inhalt der QuellePlais, F., C. Collet, O. Huet, P. Legagneux, D. Pribat, C. Reita und C. Walaine. „Low Temperature Polysilicon Technology: A low cost SOI technology?“ In Perspectives, Science and Technologies for Novel Silicon on Insulator Devices, 63–74. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4261-8_6.
Der volle Inhalt der QuelleRoy, Rabindra, Kaushik Roy und Abhijit Chatterjee. „Stress Testing: A Low Cost Alternative for Burn-in“. In VLSI: Integrated Systems on Silicon, 526–39. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-0-387-35311-1_43.
Der volle Inhalt der QuellePoortmans, Jef. „Epitaxial Thin Film Crystalline Silicon Solar Cells on Low Cost Silicon Carriers“. In Thin Film Solar Cells, 1–38. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470091282.ch1.
Der volle Inhalt der QuelleGeng, Xinhua, und Jianjun Zhang. „Study of Low-Cost Silicon Based Thin Film Solar Cells“. In Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 1228–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_246.
Der volle Inhalt der QuelleAnakal, Sudhir, und P. Sandhya. „Low-Cost IoT Based Spirometer Device with Silicon Pressure Sensor“. In Advances in Intelligent Systems and Computing, 153–61. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2475-2_14.
Der volle Inhalt der QuelleVigna, Benedetto, Fabio Pasolini, Roberto de Nuccio, Macro Capovilla, Luciano Prandi und Fabio Biganzoli. „Low Cost Silicon Coriolis’ Gyroscope Paves the Way to Consumer IMU“. In NATO Science for Peace and Security Series B: Physics and Biophysics, 67–74. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3807-4_5.
Der volle Inhalt der QuelleMartinuzzi, S., I. Périchaud, J. Gervais und D. Sarti. „Towards Low Cost Multicrystalline Silicon Wafers for High Efficiency Solar Cells“. In Tenth E.C. Photovoltaic Solar Energy Conference, 320–23. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_82.
Der volle Inhalt der QuelleSomberg, Howard. „Improvements in Direct-Cast Silicon Sheet for Low-Cost Solar Cells“. In Seventh E.C. Photovoltaic Solar Energy Conference, 782–86. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3817-5_138.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Low-Cost silicon"
Wolfe, Dan, und Keith Goossen. „Low Cost Optofluidic Smart Glass“. In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/iprsn.2016.jw4a.3.
Der volle Inhalt der QuelleZimmermann, Horst, und Horst Dietrich. „Low-cost silicon receiver OEICs“. In International Symposium on Optoelectonics and Microelectronics, herausgegeben von Qin-Yi Tong und Ulrich M. Goesele. SPIE, 2001. http://dx.doi.org/10.1117/12.444680.
Der volle Inhalt der QuelleMede, Matt. „Low cost solar silicon production“. In SPIE Solar Energy + Technology, herausgegeben von Frank E. Osterloh. SPIE, 2009. http://dx.doi.org/10.1117/12.823606.
Der volle Inhalt der QuelleMott, John R., Julio A. Bragagnolo und Michael P. Hayes. „Low cost, low CO2 emission solar grade silicon“. In 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5615923.
Der volle Inhalt der QuelleRibeiro, J. F., S. Pimenta, H. C. Fernandes, S. B. Goncalves, M. R. Souto, A. M. Goncalves, N. A. P. de Vasconcelos, P. Monteiro und J. H. Correia. „Low-cost Non-etched Silicon Neural Probe“. In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2019. http://dx.doi.org/10.1109/ner.2019.8716910.
Der volle Inhalt der QuelleCocorullo, Giuseppe, Francesco G. Della Corte, Rosario De Rosa, Ivo Rendina, Alfredo Rubino und Ezio Terzini. „Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics“. In Optoelectronics and High-Power Lasers & Applications, herausgegeben von Giancarlo C. Righini, S. Iraj Najafi und Bahram Jalali. SPIE, 1998. http://dx.doi.org/10.1117/12.298212.
Der volle Inhalt der QuelleAhmad, Harith, Kavintheran Thambiratnam, Tan Chee Leong, Tamil Many K. Thandavam und Rizal Ramli. „Low-cost SWIR Silicon-based Graphene Oxide Photodetector“. In 2019 IEEE 9th International Nanoelectronics Conferences (INEC). IEEE, 2019. http://dx.doi.org/10.1109/inec.2019.8853864.
Der volle Inhalt der QuelleSauar, Erik. „A path towards low-cost crystalline silicon PV“. In 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922455.
Der volle Inhalt der QuelleNazirzadeh, M. A., Fatih B. Atar, B. Berkan Turgut und Ali K. Okyay. „Ultra-low-cost near-infrared photodetectors on silicon“. In SPIE OPTO, herausgegeben von Graham T. Reed und Michael R. Watts. SPIE, 2015. http://dx.doi.org/10.1117/12.2078913.
Der volle Inhalt der QuelleZhang, Peng, Bo Tang, Bin Li, Yan Yang, Ruonan liu, TingTing Li, Zhihua Li und Fujiang Lin. „Low cost test system for silicon photonics testing“. In Real-time Photonic Measurements, Data Management, and Processing IV, herausgegeben von Bahram Jalali, Ming Li und Mohammad Hossein Asghari. SPIE, 2019. http://dx.doi.org/10.1117/12.2537170.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Low-Cost silicon"
King, David M., Arrelaine Dameron, Paul Lichty und James Trevey. Low-Cost Encapsulation of Silicon-Based Nanopowders Final Report. Office of Scientific and Technical Information (OSTI), März 2018. http://dx.doi.org/10.2172/1429761.
Der volle Inhalt der QuelleCostantino, Henry, Avery Sakshaug, Chris Timmons und Abirami Dhanabalan. LOW COST MANUFACTURING OF ADVANCED SILICON-BASED ANODE MATERIALS. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1567700.
Der volle Inhalt der QuelleAntoniadis, H. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers. Office of Scientific and Technical Information (OSTI), März 2011. http://dx.doi.org/10.2172/1010461.
Der volle Inhalt der QuelleRingel, Steven. III-V/Active-Silicon Integration for Low-Cost High-Performance Concentrator Photovoltaics. Office of Scientific and Technical Information (OSTI), Dezember 2017. http://dx.doi.org/10.2172/1435637.
Der volle Inhalt der QuelleROHATGI, A., S. NARASIMHA, J. MOSCHER, A. EBONG, S. KAMRA, T. KRYGOWSKI, P. DOSHI, A. RISTOW, V. YELUNDUR und DOUGLAS S. RUBY. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells. Office of Scientific and Technical Information (OSTI), Mai 2000. http://dx.doi.org/10.2172/755468.
Der volle Inhalt der QuelleBuonassisi, Tonio. Defect Engineering, Cell Processing, and Modeling for High-Performance, Low-Cost Crystalline Silicon Photovoltaics. Office of Scientific and Technical Information (OSTI), Februar 2013. http://dx.doi.org/10.2172/1064431.
Der volle Inhalt der QuelleSturm, James. HOLE-BLOCKING LAYERS FOR SILICON/ORGANIC HETEROJUNCTIONS: A NEW CLASS OF HIGH-EFFICIENCY LOW-COST PV. Office of Scientific and Technical Information (OSTI), Dezember 2017. http://dx.doi.org/10.2172/1421786.
Der volle Inhalt der QuelleAgarwal, Sumit. Final Report: New Approaches to Low-Cost Scalable Doping of Interdigitated back Contact Silicon Solar Cells. Office of Scientific and Technical Information (OSTI), März 2021. http://dx.doi.org/10.2172/1843023.
Der volle Inhalt der QuelleImhof, Howard, und Rchardi Stephenson. Improvement of screen-printable metallization paste for low-cost silicon solar cells utilizing silver coated copper powders. Office of Scientific and Technical Information (OSTI), Februar 2024. http://dx.doi.org/10.2172/2315628.
Der volle Inhalt der QuelleLiu, Zhe, Sara Bonner, Tonio Buonassisi und Emanuel Sachs. Low Cost (CAPEX and variable): Tool design for cell and module fabrication with thin, free-standing silicon wafers. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1618395.
Der volle Inhalt der Quelle