Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Loss surface“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Loss surface" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Loss surface"
Qi Zhang, Qi Zhang, Chaohua Tan Chaohua Tan, Chao Hang Chao Hang und Guoxiang Huang Guoxiang Huang. „Low-loss Airy surface plasmon polaritons“. Chinese Optics Letters 13, Nr. 8 (2015): 082401–82404. http://dx.doi.org/10.3788/col201513.082401.
Der volle Inhalt der QuelleMäki, Markku, und Liisa Aine. „TOOTH SURFACE LOSS“. Journal of the American Dental Association 143, Nr. 7 (Juli 2012): 730. http://dx.doi.org/10.14219/jada.archive.2012.0246.
Der volle Inhalt der QuelleVoitko, I. I., V. A. Denisovich, T. V. Kibalnik, O. A. Sopruk und R. V. Bondar. „Oxidized coal as a sorbent for softening water“. Surface 13(28) (30.12.2021): 188–96. http://dx.doi.org/10.15407/surface.2021.13.188.
Der volle Inhalt der QuelleHOPSTER, H. „SPIN-POLARIZED ELECTRON ENERGY LOSS SPECTROSCOPY“. Surface Review and Letters 01, Nr. 01 (Juni 1994): 89–96. http://dx.doi.org/10.1142/s0218625x94000114.
Der volle Inhalt der QuelleSavaş, Ahmet Fevzi, und Ceyda Kocabaş. „Reducing surface heat loss in steam boilers“. Open Chemistry 20, Nr. 1 (01.01.2022): 1458–66. http://dx.doi.org/10.1515/chem-2022-0241.
Der volle Inhalt der QuelleSeo, J. M., D. S. Black, P. H. Holloway und J. E. Rowe. „Angular resolved surface‐plasmon loss from Si(111) surfaces“. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 6, Nr. 3 (Mai 1988): 1523–25. http://dx.doi.org/10.1116/1.575354.
Der volle Inhalt der QuelleHe, Jun, und F. D. Tappert. „High‐frequency surface bubble loss“. Journal of the Acoustical Society of America 101, Nr. 5 (Mai 1997): 3196. http://dx.doi.org/10.1121/1.419213.
Der volle Inhalt der QuelleTantbirojn, Daranee, Antheunis Versluis, Maria R. Pintado, Ralph Delong und Carol Dunn. „TOOTH SURFACE LOSS: Authors' response“. Journal of the American Dental Association 143, Nr. 7 (Juli 2012): 730–32. http://dx.doi.org/10.14219/jada.archive.2012.0247.
Der volle Inhalt der QuelleLambon, M. A. „Semantic Loss without Surface Dyslexia“. Neurocase 1, Nr. 4 (01.12.1995): 363–70. http://dx.doi.org/10.1093/neucas/1.4.363.
Der volle Inhalt der QuelleLambon, M. A. „Semantic loss without surface dyslexia“. Neurocase 1, Nr. 4 (01.12.1995): 363a—370. http://dx.doi.org/10.1093/neucas/1.4.363-a.
Der volle Inhalt der QuelleDissertationen zum Thema "Loss surface"
Booman, Richard Albert 1957. „DETERMINATION OF LOSS MECHANISMS IN LONG RANGE SURFACE PLASMON MODES“. Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/275490.
Der volle Inhalt der QuelleWright, Samantha C. „Understanding the mechanisms behind surface elevation loss in ditched marshes“. Thesis, Boston University, 2012. https://hdl.handle.net/2144/12682.
Der volle Inhalt der QuelleLoss of surface elevation makes salt marshes more susceptible to impacts from accelerated sea level rise, such as vegetation drowning, die-off, and conversion of marsh to open water. The ultimate degradation of the salt marsh system is disastrous with ramifications ranging from loss of critical habitat to loss of an important buffer for coastal communities from storm surges. Effectively, a more comprehensive understanding of the mechanisms driving surface elevation loss in anthropogenically altered and degraded marshes is key to engineering successful marsh restoration projects, in an effort to reverse this trend. This study aims to achieve that goal in an area of a northern Massachusetts salt marsh with high man-made ditch density, through comparison of the hydrologic, sedimentary, and vegetative conditions to a non-ditched, reference portion of salt marsh. It was hypothesized that a decrease in subsurface hydroperiod through increased drainage, characteristic of areas of high ditch density, would allow for increased oxygen diffusion into the subsurface causing belowground decomposition rates to increase. This ultimately would lead to a reduction in organic matter, and without compensation from an inorganic sediment supply, marsh subsidence would occur. Water table levels, belowground biomass, bulk density data, and percent organic content data all supported this hypothesis, but direct analysis of the belowground litterbag component of this study did not demonstrate significant differences in decomposition rates between the ditched and non-ditched sites. Further study of belowground conditions, resulted in a live root turnover rate about twenty percent slower in the ditched marsh than in the non-ditched marsh. This suggests that turnover rates, not decomposition rates, may ultimately be the mechanism behind surface elevation loss in ditched marshes.
Nicoletti, Olivia. „Mapping surface plasmons of metal nanoparticles with electron energy-loss spectroscopy“. Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608025.
Der volle Inhalt der QuelleOliver, Trevor N. „Surface acoustic wave devices with low loss and high frequency operation“. Thesis, Aston University, 1989. http://publications.aston.ac.uk/8083/.
Der volle Inhalt der QuelleOh, Tchang-hun. „Control of lateral diffraction loss in vertical-cavity surface-emitting lasers /“. Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Der volle Inhalt der QuelleGu, Xiaoxiong. „Modeling effects of random rough surface on conductor loss at microwave frequencies /“. Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/5831.
Der volle Inhalt der QuelleBeasley, Jeffrey S. „Nitrogen Regime Influence on Nutrient and Sediment Surface Runoff During Vegetative Establishment of Bermudagrass“. Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/31900.
Der volle Inhalt der QuelleMaster of Science
Dienes, Susanna. „Beneath the Surface“. ScholarWorks@UNO, 2007. http://scholarworks.uno.edu/td/1058.
Der volle Inhalt der QuellePrior, Mark Kevan. „Low frequency sound propagation in sea surface mixed layers in the presence of internal waves“. Thesis, University of Southampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243119.
Der volle Inhalt der QuelleFinke, Manuela. „Studying food-related demineralisation of teeth with atomic force microscopy (AFM) and nanoindentation“. Thesis, University of Bristol, 2001. http://hdl.handle.net/1983/8d6de76b-d940-47ad-b0f6-095f56ddf54e.
Der volle Inhalt der QuelleBücher zum Thema "Loss surface"
Oliver, Trevor Norman. Surface acoustic wave devices with low loss and high frequency operation. Birmingham: Aston University.Department of Electrical and Electronic Engineering and Applied Physics, 1989.
Den vollen Inhalt der Quelle findenKasran, Baharuddin. A guide for estimating surface soil loss using the modified soil loss equation (MSLE) on forest land. Kuala Lumpur: Forest Research Institute Malaysia, 1999.
Den vollen Inhalt der Quelle findenBania, William. Mitigating knowledge loss through use of an enterprise search system. [San Diego, California]: National University, 2012.
Den vollen Inhalt der Quelle findenInternational, ASTM, Hrsg. Standard practice for estimate of the heat gain or loss and the surface temperatures of insulated flat, cylindrical, and spherical systems by use of computer programs. West Conshohocken, PA: ASTM, 2004.
Den vollen Inhalt der Quelle findenNational Risk Management Research Laboratory (U.S.). Water Supply and Water Resources Division, Hrsg. Surface infiltration rates of permeable surfaces: Six month update (November 2009 through April 2010). Edison, N.J: National Risk Management Research Laboratory, Water Supply and Water Resources Division, U.S. Environmental Protection Agency, 2010.
Den vollen Inhalt der Quelle findenEgerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope. Boston, MA: Springer US, 1996.
Den vollen Inhalt der Quelle findenRywocka-Kenig, Krystyna. Mikrorzeźba powierzchni ziarn kwarcu z lessów =: Surface microtextures of quartz grains from loesses. Warszawa: Państwowy Instytut Geologiczny, 1997.
Den vollen Inhalt der Quelle findenEgerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope. Boston, MA: Springer Science+Business Media, LLC, 2011.
Den vollen Inhalt der Quelle findenBell, Gavin Richard. High resolution electron energy loss spectroscopy of InAs and InSb (001) surfaces. [s.l.]: typescript, 1996.
Den vollen Inhalt der Quelle findenRandolph, Caldecott. Measurement of the properties of lossy materials inside a finite conducting cylinder. Cleveland, OH: National Aeronautics and Space Administration, Lewis Research Center, 1988.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Loss surface"
Field, James, Jimmy Steele und Robert Wassell. „Managing Tooth Surface Loss“. In BDJ Clinician’s Guides, 147–60. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-79093-0_13.
Der volle Inhalt der QuelleField, James, Angus Walls, Jimmy Steele und Robert Wassell. „Recognising Tooth Surface Loss“. In BDJ Clinician’s Guides, 67–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-79093-0_6.
Der volle Inhalt der QuelleNagao, Tadaaki. „Electron Energy-Loss Spectroscopy“. In Compendium of Surface and Interface Analysis, 133–38. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_23.
Der volle Inhalt der QuelleToennies, J. P. „Experimental Determination of Surface Phonons by Helium Atom and Electron Energy Loss Spectroscopy“. In Surface Phonons, 111–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75785-3_5.
Der volle Inhalt der QuelleMills, D. L., S. Y. Tong und J. E. Black. „The Study of Surface Phonons by Electron Energy Loss Spectroscopy: Theoretical and Experimental Considerations“. In Surface Phonons, 193–207. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75785-3_7.
Der volle Inhalt der QuelleOkuyama, Hiroshi. „High-Resolution Electron Energy Loss Spectroscopy“. In Compendium of Surface and Interface Analysis, 253–57. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_41.
Der volle Inhalt der QuelleKesmodel, Larry L. „High-Resolution Electron Energy Loss Spectroscopy“. In The Handbook of Surface Imaging and Visualization, 223–37. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780367811815-18.
Der volle Inhalt der QuelleVattuone, Luca, Letizia Savio und Mario Rocca. „High Resolution Electron Energy Loss Spectroscopy (HREELS): A Sensitive and Versatile Surface Tool“. In Surface Science Techniques, 499–529. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34243-1_17.
Der volle Inhalt der QuelleHall, B. M., und D. L. Mills. „Electron Energy Loss Studies of Surface Phonons on Crystal Surfaces“. In Springer Proceedings in Physics, 145–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76376-2_19.
Der volle Inhalt der QuelleHill, Robert L., Christoph M. Gross und J. Scott Angle. „Rainfall Simulation for Evaluating Agrochemical Surface Loss“. In ACS Symposium Series, 367–82. Washington, DC: American Chemical Society, 1991. http://dx.doi.org/10.1021/bk-1991-0465.ch023.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Loss surface"
Maleki, Mohammad Javad, Mohammad Soroosh und Gholamreza Akbarizadeh. „Low-Loss Optical Decoder for Surface Plasmon Polariton Transmission“. In 2024 9th International Conference on Technology and Energy Management (ICTEM), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/ictem60690.2024.10631995.
Der volle Inhalt der QuelleZhu, Yan, Barrie Mecrow, Glynn Atkinson, Xu Deng und Guohai Liu. „Stress-dependent Iron Loss in Segmented Laminations Considering Surface Roughness“. In 2024 International Conference on Electrical Machines (ICEM), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/icem60801.2024.10700393.
Der volle Inhalt der QuelleManley, D. „The Loss of HMS Sheffield: A Technical Re -Assessment“. In Warship 2015: Future Surface Vessels. RINA, 2015. http://dx.doi.org/10.3940/rina.ws.2015.16.
Der volle Inhalt der QuelleAINSLIE, MA. „INTERFACE WAVES IN A THIN SEDIMENT LAYER: REVIEW AND CONDITIONS FOR HIGH LOSS“. In Stochastic Volume and Surface Scattering 1999. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/18848.
Der volle Inhalt der QuelleLi, Wei, Xing Fan, Yongle Sun und Lixun Zhu. „Iron Loss Calculation Based on Loss Surface Hysteresis Model and Its Verification“. In 2022 IEEE 5th International Electrical and Energy Conference (CIEEC). IEEE, 2022. http://dx.doi.org/10.1109/cieec54735.2022.9846296.
Der volle Inhalt der QuelleMatsuda, Hisashi, Fumio Otomo, Hiroyuki Kawagishi, Asako Inomata, Yoshiki Niizeki und Takashi Sasaki. „Influence of Surface Roughness on Turbine Nozzle Profile Loss and Secondary Loss“. In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90828.
Der volle Inhalt der QuelleBarker, R., und E. Russell. „Variation of Clay Resistivity with Moisture Loss“. In Near Surface 2004 - 10th EAGE European Meeting of Environmental and Engineering Geophysics. European Association of Geoscientists & Engineers, 2004. http://dx.doi.org/10.3997/2214-4609-pdb.10.p056.
Der volle Inhalt der QuelleNiamien, C., S. Collardey, A. Sharaiha und K. Mahdjoubi. „Surface wave loss and material loss in printed antennas over magneto-dielectric materials“. In the American Electromagnetics Conference (AMEREM). IEEE, 2010. http://dx.doi.org/10.1109/antem.2010.5552498.
Der volle Inhalt der QuelleSchulkin, M. „Sea Surface Loss in Surface Ducts and Shallow Water: A Historical Perspective“. In OCEANS '86. IEEE, 1986. http://dx.doi.org/10.1109/oceans.1986.1160507.
Der volle Inhalt der QuelleBobb, Dwayne A., Guohua Zhu, Mohammad Mayy, Q. L. Williams, Patricia F. Mead, Vladimir Gavrilenko und M. A. Noginov. „Modification of Surface Plasmon Absorption Loss via Alloys“. In Plasmonics and Metamaterials. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/meta_plas.2008.mthc4.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Loss surface"
Kesmodel, L. L. High resolution electron energy loss studies of surface vibrations. Office of Scientific and Technical Information (OSTI), Mai 1992. http://dx.doi.org/10.2172/5231722.
Der volle Inhalt der QuelleKesmodel, L. L. High resolution electron energy loss studies of surface vibrations. Office of Scientific and Technical Information (OSTI), Mai 1993. http://dx.doi.org/10.2172/6786588.
Der volle Inhalt der QuelleKesmodel, L. High resolution electron energy loss studies of surface vibrations. Office of Scientific and Technical Information (OSTI), Juni 1990. http://dx.doi.org/10.2172/6901277.
Der volle Inhalt der QuelleTilly, Jonathan L. Role of Oocyte Loss in Ovarian Surface Mesothelial Cell Transformation. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2004. http://dx.doi.org/10.21236/ada434130.
Der volle Inhalt der QuelleTilly, Jonathan L., und Grant R. MacGregor. Role of Oocyte Loss in Ovarian Surface Mesothelial Cell Transformation. Fort Belvoir, VA: Defense Technical Information Center, November 2002. http://dx.doi.org/10.21236/ada413259.
Der volle Inhalt der QuelleTilly, Jonathan L. Role of Oocyte Loss in Ovarian Surface Mesothelial Cell Transformation. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada424569.
Der volle Inhalt der QuelleFarshid Sadeghi und Chin-Pei Wang. Advanced Natural Gas Reciprocating Engine: Parasitic Loss Control through Surface Modification. Office of Scientific and Technical Information (OSTI), Dezember 2008. http://dx.doi.org/10.2172/974561.
Der volle Inhalt der QuelleMallarino, Antonio, Richard Cruse, Dan Jaynes, John Sawyer und Pablo Barbieri. Impacts of Cover Crops on Phosphorus and Nitrogen Loss with Surface Runoff. Ames: Iowa State University, Digital Repository, 2015. http://dx.doi.org/10.31274/farmprogressreports-180814-1832.
Der volle Inhalt der QuelleMallarino, Antonio P., Aaron Alan Andrews, Mazhar Ul Haq und Matthew J. Helmers. Corn Harvest and Nutrient Management Systems Impacts on Phosphorus Loss with Surface Runoff. Ames: Iowa State University, Digital Repository, 2010. http://dx.doi.org/10.31274/farmprogressreports-180814-1891.
Der volle Inhalt der QuelleHoffman, E. Effects of cavern depth on surface subsidence and storage loss of oil-filled caverns. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/5570187.
Der volle Inhalt der Quelle