Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „LoRaWAN network“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "LoRaWAN network" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "LoRaWAN network"
Drotar, Istvan, Balazs Lukacs und Miklós Kuczmann. „LoRaWAN Network Performance Test“. Acta Technica Jaurinensis 13, Nr. 4 (11.08.2020): 268–80. http://dx.doi.org/10.14513/actatechjaur.v13.n4.547.
Der volle Inhalt der QuelleVangelista, Lorenzo, und Marco Centenaro. „Worldwide Connectivity for the Internet of Things Through LoRaWAN“. Future Internet 11, Nr. 3 (02.03.2019): 57. http://dx.doi.org/10.3390/fi11030057.
Der volle Inhalt der QuelleBankov, Dmitry, Evgeny Khorov und Andrey Lyakhov. „LoRaWAN Modeling and MCS Allocation to Satisfy Heterogeneous QoS Requirements“. Sensors 19, Nr. 19 (27.09.2019): 4204. http://dx.doi.org/10.3390/s19194204.
Der volle Inhalt der QuelleCotrim, Jeferson Rodrigues, und João Henrique Kleinschmidt. „LoRaWAN Mesh Networks: A Review and Classification of Multihop Communication“. Sensors 20, Nr. 15 (31.07.2020): 4273. http://dx.doi.org/10.3390/s20154273.
Der volle Inhalt der QuellePolonelli, Tommaso, Davide Brunelli, Achille Marzocchi und Luca Benini. „Slotted ALOHA on LoRaWAN-Design, Analysis, and Deployment“. Sensors 19, Nr. 4 (18.02.2019): 838. http://dx.doi.org/10.3390/s19040838.
Der volle Inhalt der QuelleLin, Jun, Zhiqi Shen, Chunyan Miao und Siyuan Liu. „Using blockchain to build trusted LoRaWAN sharing server“. International Journal of Crowd Science 1, Nr. 3 (04.09.2017): 270–80. http://dx.doi.org/10.1108/ijcs-08-2017-0010.
Der volle Inhalt der QuelleKufakunesu, Rachel, Gerhard P. Hancke und Adnan M. Abu-Mahfouz. „A Survey on Adaptive Data Rate Optimization in LoRaWAN: Recent Solutions and Major Challenges“. Sensors 20, Nr. 18 (05.09.2020): 5044. http://dx.doi.org/10.3390/s20185044.
Der volle Inhalt der QuelleMarini, Riccardo, Konstantin Mikhaylov, Gianni Pasolini und Chiara Buratti. „LoRaWANSim: A Flexible Simulator for LoRaWAN Networks“. Sensors 21, Nr. 3 (20.01.2021): 695. http://dx.doi.org/10.3390/s21030695.
Der volle Inhalt der QuelleMatni, Nagib, Jean Moraes, Helder Oliveira, Denis Rosário und Eduardo Cerqueira. „LoRaWAN Gateway Placement Model for Dynamic Internet of Things Scenarios“. Sensors 20, Nr. 15 (04.08.2020): 4336. http://dx.doi.org/10.3390/s20154336.
Der volle Inhalt der QuelleCitoni, Bruno, Shuja Ansari, Qammer Hussain Abbasi, Muhammad Ali Imran und Sajjad Hussain. „Impact of Inter-Gateway Distance on LoRaWAN Performance“. Electronics 10, Nr. 18 (08.09.2021): 2197. http://dx.doi.org/10.3390/electronics10182197.
Der volle Inhalt der QuelleDissertationen zum Thema "LoRaWAN network"
Wang, Bin. „Realize Smart City Applications with LoRaWAN Network“. Thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-35428.
Der volle Inhalt der QuellePlacuzzi, Andrea. „A platform for aggregate computing over LoRaWAN network“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20484/.
Der volle Inhalt der QuelleJontegen, Felix, und Emma Good. „Evaluating LoRaWAN for IoT applications by developing a wireless parking space monitoring sensor“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234284.
Der volle Inhalt der QuelleAtt hitta en parkeringsplats kan vara en omständing uppgift, och är något som bilister idag spenderar för mycket tid på. Med den ökade risken från global uppvärmning är det viktigt att försöka reducera körtid. Syftet med den här rapporten är att utvärdera användandet av LoRaWAN för urbana IoT-applikationer genom att utveckla ett sensorsystem för att bevaka parkeringsplatser för att göra det enklare att hitta lediga parkeringsplatser. Huvudkomponenten i den utvecklade prototypen av sensorsystemet är en TheThings UNO, vilket är en modifierad version av en Arduino Leonardo med en inbyggd RN2483 LoRaWAN-modul. Två sorters sensorer, en avståndssensor och en magnetometer, testades i sensorsystemet. Avståndssensorn visade sig vara den mer pålitliga sensorn för att detektera bilar. En kombination av en avståndssensor och en magnetometer kan poteniellt användas tillsammans för att minska strömanvändningen. LoRaWANhar stor potential att fungera i ett parkeringbevakningssystem samt andra urbana IoT-applikationer, men dess täcking och pålitlighet i olika miljöer borde undersökas mer.
Maturana, Araneda Nicolás Andrés. „Implementation and evaluation of static context header compression for IPv6 packets within a LoRaWAN network“. Tesis, Universidad de Chile, 2019. http://repositorio.uchile.cl/handle/2250/170134.
Der volle Inhalt der QuelleEl paradigma de comunicación Internet of Things (IoT), el cual plantea la posibilidad de interconectar objetos cotidianos y toda clase de dispositivos convencionales a Internet, está actualmente en pleno desarrollo. El gran número de nodos que se espera conectar a Internet exige a su vez la implementación a gran escala de Internet Protocol versión 6 (IPv6). IoT busca el desarrollo de nuevas aplicaciones y ha impulsado la creación de nuevas arquitecturas de red y nuevas clases de dispositivos. Las redes Low Power Wide Area Networks (LPWAN) han surgido recientemente como una evolución natural del concepto Wireless Sensor Networks (WSN), redes de sensores in- terconectadas. A la luz del IoT, las nuevas redes LPWAN abren un nuevo campo de desarrollo, principalmente enfocado en servicios de monitoreo y afines que se desarrollen en áreas am- plias y no requieran grandes tasas de transferencia. Los dispositivos LPWAN se caracterizan por ser de bajo consumo energético y de bajo costo, facilitando su despliegue masivo por largos períodos sin necesidad de recargar sus baterías. Long Range Wide Area Network (LoRaWAN) es una de las primeras y principales tec- nologías LPWAN, y presenta una gran flexibilidad que la hace ideal para redes de diseño propio. En América funciona en la banda industrial, científica y médica (ISM) alrededor de los 915 MHz. Sin embargo, también existen muchas otras tecnologías LPWAN con arquitec- turas y protocolos propietarios, lo que dificulta alcanzar la interoperabilidad que se desea en el entorno IoT. El grupo de trabajo para la implementación de IPv6 sobre redes LPWAN (lpwan WG) perteneciente al Internet Engineering Task Force (IETF) se encuentra actualmente desarrol- lando un mecanismo de compresión y fragmentación de paquetes IPv6 para redes LPWAN denominado Static Context Header Compression (SCHC). El esquema de compresión se en- cuentra terminado, pero aún no ha sido implementado ni evaluado de manera oficial. En este trabajo se presenta una plataforma experimental para la implementación y eval- uación del mecanismo SCHC sobre una red LoRaWAN consistente en un nodo terminal Mi- crochip y un Radio Gateway (RG) de Everynet. En su desarrollo se han integrado múltiples y diversas herramientas del campo de las Telecomunicaciones y las Tecnologías de Información y Comunicación (ICT). La plataforma creada logra una implementación básica pero exitosa del esquema de com- presión de SCHC. Por medio de ella se ha llevado a cabo una evaluación preliminar del funcionamiento de SCHC, analizando el nivel de compresión logrado por el mecanismo para tres contextos de comunicación característicos de una red LPWAN. Los resultados obtenidos son positivos.
Laricchia, Luigi. „Monitoraggio ambientale tramite tecnologia LoRaWAN: misurazioni sperimentali e piattaforma di data analytics“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17312/.
Der volle Inhalt der QuelleEriksen, Rúni. „Energy Consumption of Low Power Wide Area Network Node Devices in the Industrial, Scientific and Medical Band“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259508.
Der volle Inhalt der QuelleLow-Power Wide-Area Networks, LPWANs, uppnår långa kommunikationsräckvidder med låg energiförbrukning genom att kommunicera med låga bithastigheter. De flesta enheter är batteridrivna och måste operera över längre tid, vilket ökar kraven för energieffektivitet. Denna avhandling undersöker energiförbrukningen för LPWAN enheter i det industriella, vetenskapliga och medicinska ISM bandet och hur olika användningsfall påverkar förbrukningen. Specifikt undersöks LoRa/LoRaWAN och Sigfox. Deras viktigaste egenskaper beskrivs och deras energiförbrukning modelleras. Modellerna verifieras genom att jämföra resultaten från modellerna med uppmätt effektförbrukning av LoRa och Sigfox-enheter. Genom modellerna undersöks även designparametrar med avseende på strömkonsumtion och produktens livslängd uppskattas. Påverkan användningsfall har på energiförbrukning undersöks genom att mäta Package Delivery Ratio, PDR, vid olika avstånd och bitöverföringshastigheter.Resultaten visade att bitraten, dataredundansen och protokollstorleken var bland parametrar som kunde användas för att optimera energieffektiviteten. Det visades också att enhetens livslängd kunde ökas signifikant genom att öka överföringsintervallet och ta bort meddelandebekräftelser. Realistiskt kan LoRaenheter ha en livslängd på mer än 10 år och Sigfox 3 år, med ett batteri på 2800 mWh. Resultatet av olika test visade att en 100 % PDR inte bör förväntas vid någon bitrate, men lägre bitrater och redundans för meddelanden ökar sannolikheten för en paketleverans. Det finns därför en avvägning mellan låg energiförbrukning och räckvidd och sannolikheten för en lyckad packetleverans. Dessutom konstaterades att en låg nod till gateway-avstånd och en hög gateway-densitet ökar sannolikheten för att transaktioner lyckas. Således är energiförbrukningen tätt kopplad till nätverkskonfigurationen.
Picard, Alexis. „I²PHEN : une nouvelle plateforme de télésurveillance médicale basée sur l'Internet des Objets“. Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCD056.
Der volle Inhalt der QuelleMedical telemonitoring is an area still in full development in France. It is a branch of telemedicine which aims at enabling a doctor in collecting and interpreting remotely the data necessary for the medical follow-up of a patient. It enables, among others, in improving remote medical monitoring of seniors with loss of autonomy or suffering from chronic diseases (heart diseases, diabetes and high blood pressure for example). Hence it encourages their stay at home and to warn as soon as possible of any hospitalizations.This CIFRE Thesis within Maincare company (major publisher of digital solutions for the world of health) allowed us to propose our novel platform I²PHEN (IoT Interoperable Platform for Health moNitoring low power) in which the monitoring of a patient's health parameters is done using connected objects (sphygmomanometer, thermometer, glucometer, ...) which communicates with the remote platform (distributed data monitoring). The central server can then trigger alerts which are defined beforehand with the medical teams. The technological choice of the networks used is a major concern. LPWAN networks (Low-Power Wide Area Network) offer a cost-effective alternative and are less expensive in terms of energy than cellular networks to transmit small amounts of data from sensors and energy efficient objects powered on batteries over important distances. This field being new, and still little dedicated to the medical field, it is necessary to develop new focus of research such as COMMA, a new adaptive algorithm to reduce energy consumption and interference in daily mobility. Hence, the first lock is the energy consumption, in relation to the quality of service (QoS), of these new networks in the critical area of telemedecine. The second lock, and probably the most difficult, is to propose interoperable solutions in which connected objects can interact, through these new networks, with the remote platform through a local gateway (based on Arduino). In the end, the platform that we propose in this PHD allows the telemonitoring of patients from end to end, is interoperable and energy efficient
Bouguera, Taoufik. „Capteur communicant autonome en énergie pour l'loT“. Thesis, Nantes, 2019. http://www.theses.fr/2019NANT4007/document.
Der volle Inhalt der QuelleResearchers aim to develop entirely autonomous sensors. By ensuring an important autonomy, the use of batteries solves part of the energy problem with relatively low costs. However, batteries introduce different problems such as maintenance and environmental pollution. Harvesting thermal, mechanical, electromagnetic, solar or wind energy present in the environment is an attractive solution. Using harvested energy from their surroundings, wireless sensor nodes can significantly increase their typical lifetime. Nevertheless, the harvested energy depends on the surrounding conditions of the device and can vary periodically or randomly. It seems important to adapt the system (measurement and data transmission) to the harvesting energy constraints. The thesis objective is to provide an autonomous sensor solution based on a multisources energy harvesting and management system (solar and wind energies), which can be used in different IoT applications. First, we are interested in modeling and optimizing the sensor node energy consumption. Then, the multiple harvesting system is modeled according to the energy needs of the sensor node. Besides, we focus on the power management of the autonomous system. This management part is based on predictions of both available and consumed energies. Finally, the proposed modeling and optimization studies are validated with experimental works in order to develop an Autonomous Communicating Sensor platform for IoT applications
Milota, Martin. „Systém zabezpečení včelích úlů před nepovolenou manipulací“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442373.
Der volle Inhalt der QuelleDrápela, Roman. „Implementace a vyhodnocení komunikační technologie LTE Cat-M1 v simulačním prostředí Network Simulator 3“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400908.
Der volle Inhalt der QuelleBücher zum Thema "LoRaWAN network"
International, Symposium on Integration of LORAN-C/Eurofix and EGNOS/Galileo (2000 Bonn Germany). International Symposium on Integration of LORAN-C/Eurofix and EGNOS/Galileo: Towards a future European positioning and navigation network : symposium proceedings. Bonn: Deutsche Gesellschaft für Ortung und Navigation, 2000.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "LoRaWAN network"
Benkahla, Norhane, Hajer Tounsi, Ye-Qiong Song und Mounir Frikha. „Enhanced Dynamic Duty Cycle in LoRaWAN Network“. In Ad-hoc, Mobile, and Wireless Networks, 147–62. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00247-3_15.
Der volle Inhalt der QuelleMuthanna, Mohammed Saleh Ali, Ping Wang, Min Wei, Waleed Al-mughalles und Ahsan Rafiq. „Dynamic Programming Method for Traffic Distribution in LoRaWAN Network“. In Lecture Notes in Computer Science, 317–25. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65726-0_28.
Der volle Inhalt der QuelleJebroni, Zakariae, Hajar Chadli, Khalid Salmi, Mohammed Saber und Belkassem Tidhaf. „Modeling and Simulation of LoRaWAN for Smart Metering Network“. In Advances in Smart Technologies Applications and Case Studies, 687–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53187-4_75.
Der volle Inhalt der QuelleBenzarti, Sana, Bayrem Triki und Ouajdi Korbaa. „Drone Authentication Using ID-Based Signcryption in LoRaWAN Network“. In Advances in Intelligent Systems and Computing, 205–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49342-4_20.
Der volle Inhalt der QuellePolonelli, Tommaso, Davide Brunelli, Andrea Bartolini und Luca Benini. „A LoRaWAN Wireless Sensor Network for Data Center Temperature Monitoring“. In Lecture Notes in Electrical Engineering, 169–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11973-7_20.
Der volle Inhalt der QuelleFrancés-Chust, Jorge, Joaquín Izquierdo und Idel Montalvo. „LoRaWan for Smarter Management of Water Network: From metering to data analysis“. In Machine Learning for Cyber Physical Systems, 133–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-58485-9_15.
Der volle Inhalt der QuelleTsai, Kun-Lin, Fang-Yie Leu, Li-Chun Yang, Chi Li und Jhih-Yan Liu. „LoRaWAN Network Server Session Keys Establish Method with the Assistance of Join Server“. In Communications in Computer and Information Science, 23–33. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9609-4_3.
Der volle Inhalt der QuelleNgo, Thanh Dinh, Fabien Ferrero, Vinh Quang Doan und Tuan Van Pham. „Industrial LoRaWAN Network for Danang City: Solution for Long-Range and Low-Power IoT Applications“. In Research in Intelligent and Computing in Engineering, 65–75. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7527-3_7.
Der volle Inhalt der QuelleAguilar, Sergio, Alexandre Marquet, Laurent Toutain, Carles Gomez, Rafael Vidal, Nicolas Montavont und Georgios Z. Papadopoulos. „LoRaWAN SCHC Fragmentation Demystified“. In Ad-Hoc, Mobile, and Wireless Networks, 213–27. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31831-4_15.
Der volle Inhalt der QuelleFlauzac, Olivier, Joffrey Hérard, Florent Nolot und Philippe Cola. „A Fault Tolerant LoRa/LoRaWAN Relay Protocol Using LoRaWAN Class A Devices“. In Ad-Hoc, Mobile, and Wireless Networks, 295–302. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61746-2_22.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "LoRaWAN network"
Oniga, Bogdan, Vasile Dadarlat, Elie De Poorter und Adrian Munteanu. „A secure LoRaWAN sensor network architecture“. In 2017 IEEE SENSORS. IEEE, 2017. http://dx.doi.org/10.1109/icsens.2017.8233990.
Der volle Inhalt der QuelleMihalik, Michal, Marian Hrubos und Emilia Bubenikova. „Wireless Proximity Sensor in LoRaWAN Network“. In 2020 International Conference on Applied Electronics (AE). IEEE, 2020. http://dx.doi.org/10.23919/ae49394.2020.9232725.
Der volle Inhalt der QuelleDalela, Pankaj Kumar, Smriti Sachdev und Vipin Tyagi. „LoRaWAN Network Capacity for Practical Network Planning in India“. In 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC). IEEE, 2019. http://dx.doi.org/10.23919/ursiap-rasc.2019.8738342.
Der volle Inhalt der QuelleFerrari, Paolo, Emiliano Sisinni, Dhiego Fernandes Carvalho, Gabriel Signoretti, Marianne D da Silva, Ivanovitch Silva und Diego Silva. „Using LoRaWAN smart city infrastructure as backup network for Industry 4.0 enabled vehicles“. In IX Simpósio Brasileiro de Engenharia de Sistemas Computacionais. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/sbesc_estendido.2019.8646.
Der volle Inhalt der QuelleLalle, Yandja, Lamia Chaari Fourati, Mohamed Fourati und Joao Paulo Barraca. „LoRaWAN Network Capacity Analysis for Smart Water Grid“. In 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). IEEE, 2020. http://dx.doi.org/10.1109/csndsp49049.2020.9249623.
Der volle Inhalt der QuelleAlmeida, Nelson C., Rodrigo P. Rolle, Eduardo P. Godoy, Paolo Ferrari und Emiliano Sisinni. „Proposal of a Hybrid LoRa Mesh / LoRaWAN Network“. In 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT). IEEE, 2020. http://dx.doi.org/10.1109/metroind4.0iot48571.2020.9138206.
Der volle Inhalt der QuelleFujdiak, Radek, Petr Mlynek, Jiri Misurec und Martin Strajt. „Simulated Coverage Estimation of Single Gateway LoRaWAN Network“. In 2018 25th International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2018. http://dx.doi.org/10.1109/iwssip.2018.8439232.
Der volle Inhalt der QuelleMayer, Irak. „LoRaWan-Hyperledger robust network integrity on IoT devices“. In Disruptive Technologies in Information Sciences III, herausgegeben von Misty Blowers, Russell D. Hall und Venkateswara R. Dasari. SPIE, 2019. http://dx.doi.org/10.1117/12.2519219.
Der volle Inhalt der QuelleKuzmichev, S. A., N. V. Stepanov und A. M. Turlikov. „METHODS FOR ASSIGNING DEVICES PARAMETERS WHEN DEPLOYING LORAWAN NETWORK“. In PROCESSING, TRANSMISSION AND PROTECTION OF INFORMATION IN COMPUTER SYSTEMS. St. Petersburg State University of Aerospace Instrumentation, 2020. http://dx.doi.org/10.31799/978-5-8088-1452-3-2020-1-241-245.
Der volle Inhalt der QuelleMcPherson, Ross, Craig Hay und James Irvine. „Using LoRaWAN Technology to Enhance Remote Power Network Monitoring“. In 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring). IEEE, 2019. http://dx.doi.org/10.1109/vtcspring.2019.8746298.
Der volle Inhalt der Quelle