Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Log-concavity“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Log-concavity" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Log-concavity"
Saumard, Adrien, und Jon A. Wellner. „Log-concavity and strong log-concavity: A review“. Statistics Surveys 8 (2014): 45–114. http://dx.doi.org/10.1214/14-ss107.
Der volle Inhalt der QuelleLlamas, Aurora, und José Martínez-Bernal. „Nested Log-Concavity“. Communications in Algebra 38, Nr. 5 (26.04.2010): 1968–81. http://dx.doi.org/10.1080/00927870902950662.
Der volle Inhalt der QuelleFinner, H., und M. Roters. „Distribution functions and log-concavity“. Communications in Statistics - Theory and Methods 22, Nr. 8 (Januar 1993): 2381–96. http://dx.doi.org/10.1080/03610929308831156.
Der volle Inhalt der QuelleWang, Yi. „Linear transformations preserving log-concavity“. Linear Algebra and its Applications 359, Nr. 1-3 (Januar 2003): 161–67. http://dx.doi.org/10.1016/s0024-3795(02)00438-x.
Der volle Inhalt der QuelleLin, Yi, und Álvaro Pelayo. „Log-concavity and symplectic flows“. Mathematical Research Letters 22, Nr. 2 (2015): 501–27. http://dx.doi.org/10.4310/mrl.2015.v22.n2.a9.
Der volle Inhalt der QuelleWang, Yi, und Yeong-Nan Yeh. „Log-concavity and LC-positivity“. Journal of Combinatorial Theory, Series A 114, Nr. 2 (Februar 2007): 195–210. http://dx.doi.org/10.1016/j.jcta.2006.02.001.
Der volle Inhalt der QuelleKahn, J., und M. Neiman. „Negative correlation and log-concavity“. Random Structures & Algorithms 37, Nr. 3 (30.11.2009): 367–88. http://dx.doi.org/10.1002/rsa.20292.
Der volle Inhalt der QuelleShaked, Moshe, und J. George Shanthikumar. „Characterization of Some First Passage Times Using Log-Concavity and Log-Convexity as Aging Notions“. Probability in the Engineering and Informational Sciences 1, Nr. 3 (Juli 1987): 279–91. http://dx.doi.org/10.1017/s026996480000005x.
Der volle Inhalt der QuelleJohnson, Oliver, Ioannis Kontoyiannis und Mokshay Madiman. „Log-concavity, ultra-log-concavity, and a maximum entropy property of discrete compound Poisson measures“. Discrete Applied Mathematics 161, Nr. 9 (Juni 2013): 1232–50. http://dx.doi.org/10.1016/j.dam.2011.08.025.
Der volle Inhalt der QuelleKarp, D., und S. M. Sitnik. „Log-convexity and log-concavity of hypergeometric-like functions“. Journal of Mathematical Analysis and Applications 364, Nr. 2 (April 2010): 384–94. http://dx.doi.org/10.1016/j.jmaa.2009.10.057.
Der volle Inhalt der QuelleDissertationen zum Thema "Log-concavity"
Vecchi, Lorenzo. „On the log-concavity of the characteristic polynomial of a matroid“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20797/.
Der volle Inhalt der QuelleNance, Anthony Charles. „On the independence numbers for the cycle matroid of a wheel: Unimodality and bounds supporting log-concavity /“. The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu148794501561837.
Der volle Inhalt der QuelleBizeul, Pierre. „Stochastic methods in convexity“. Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS731.
Der volle Inhalt der QuelleThis thesis deals with high-dimensionnal phenomena arising under convexity assumptions. In a first part, we study the behavior of the entropy and information with respect to convolutions of log-concave vectors. Then, using stochastic localization, a very recent technique which led to an almost resolution of the KLS conjecture, we establish new results regarding the concentration fucntion of log-concave probabilities, and their log-Sobolev constant. Finally, the last chapter is devoted to the study of large random linear systems, for which a cut-off phenomenon is established
Neiman, Michael. „Negative correlation and log-concavity“. 2009. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000051389.
Der volle Inhalt der QuelleChen, Shih-Yan, und 陳世晏. „Unimodality and Log-concavity of Independence Polynomials ofVery Well-covered Graphs and Topological Properties ofSome Interconnection Networks“. Thesis, 2011. http://ndltd.ncl.edu.tw/handle/12356328450125953702.
Der volle Inhalt der Quelle中原大學
應用數學研究所
99
There are two main parts in this dissertation. In the first part, we study “Unimodality and log-concavity of independence polynomials of very well-covered graphs”. We show that the independence polynomial I(G*;x) of G* is unimodal for any graph G* whose skeleton G has the stability number α(G)<=8. In addition, we show that the independence polynomial of K*2,n is log-concave with a unique mode. In the second part, we investigate “Topological properties of some interconnection networks”. Using the structures of dual-cubes introduced by Li and Peng, we introduce a new interconnection work, called dual-cube extensive networks (DCEN). Furthermore, we study some topological properties of DCEN. More precisely, we show that DCEN(G) preserves some nice properties of G such as the hamiltonian connectivity, globally 3*-connectivity, and edge-pancyclicity, and also discuss the fault-tolerant hamiltonian property of DCEN(G). In addition, we investigate the 4-fault-tolerant hamiltonicity of circular graphs G(n,4) and the existence of mutually independent hamiltonian cycles of alternating group graphs AGn.
Guo, Yi-Xuan, und 郭易軒. „Log-concavity of independence polynomials of the very well-covered graphs generated from the complete bipartite graphs Kt,n“. Thesis, 2011. http://ndltd.ncl.edu.tw/handle/84442710530380984473.
Der volle Inhalt der Quelle中原大學
應用數學研究所
99
A well-covered graph is a graph in which all maximal stable/independent sets have the same cardinality. Let sk denote the number of stable sets of cardinality k in graph G, and α(G) be the size of a maximum stable set. A well-covered graph G with no isolated vertices is called very well-covered if |G| = 2α(G). The independence polynomial of G is defined by I(G; x) = Σα(G) k=0 skxk, and I(G; x) is log-concave if s2k ≥ sk+1sk¡1 holds for 1 ≤ k ≤ α(G)−1. Given an arbitrary graph G, G¤ is the graph obtained from G by appending a single pendant edge to each vertex of G. It is easy to see that G¤ is very well-covered. In 2004, Levit and Mandrescu [17] proved that the independence polynomial of K¤1,n is log-concave. In 2010, the same result for K¤2,n is proved by Chen and Wang [8]. In this thesis, we find the independence polynomials I(K¤t,n; x) of K¤t,n for all positive integers t ≤ n and show that I(K¤t,n; x) is log-concave for any t with 3 ≤ t ≤ 5.
Buchteile zum Thema "Log-concavity"
Asai, Nobuhiro, Izumi Kubo und Hui-Hsiung Kuo. „Bell Numbers, Log-Concavity, and Log-Convexity“. In Recent Developments in Infinite-Dimensional Analysis and Quantum Probability, 79–87. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0842-6_4.
Der volle Inhalt der QuelleWellner, Jon A. „Strong Log-concavity is Preserved by Convolution“. In High Dimensional Probability VI, 95–102. Basel: Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0490-5_7.
Der volle Inhalt der QuelleGarcía-Marco, Ignacio, Pascal Koiran und Sébastien Tavenas. „Log-Concavity and Lower Bounds for Arithmetic Circuits“. In Mathematical Foundations of Computer Science 2015, 361–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48054-0_30.
Der volle Inhalt der QuelleMező, István. „Unimodality, log-concavity, and log-convexity“. In Combinatorics and Number Theory of Counting Sequences, 105–21. Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315122656-4.
Der volle Inhalt der Quelle„Log-Concavity and Unimodality“. In Information and Exponential Families, 93–102. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118857281.ch6.
Der volle Inhalt der Quelle„Unimodality, Log-concavity, Real-rootedness And Beyond“. In Handbook of Enumerative Combinatorics, 461–508. Chapman and Hall/CRC, 2015. http://dx.doi.org/10.1201/b18255-13.
Der volle Inhalt der Quelle„Convexity and Log-Concavity Related Moment and Probability Inequalities“. In Mathematics in Science and Engineering, 339–59. Elsevier, 1992. http://dx.doi.org/10.1016/s0076-5392(08)62825-8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Log-concavity"
Ahmita, Moussa, Hacène Belbachir und Takao Komatsu. „Preserving log-concavity and generalized triangles“. In DIOPHANTINE ANALYSIS AND RELATED FIELDS—2010: DARF—2010. AIP, 2010. http://dx.doi.org/10.1063/1.3478183.
Der volle Inhalt der QuelleSun, Yin, und Shidong Zhou. „Tight Bounds of the Generalized Marcum Q-Function Based on Log-Concavity“. In IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference. IEEE, 2008. http://dx.doi.org/10.1109/glocom.2008.ecp.226.
Der volle Inhalt der Quelle