Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Locomotion control of snake-like robots“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Locomotion control of snake-like robots" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Locomotion control of snake-like robots"
Cao, Zhengcai, Dong Zhang, Biao Hu und Jinguo Liu. „Adaptive Path Following and Locomotion Optimization of Snake-Like Robot Controlled by the Central Pattern Generator“. Complexity 2019 (21.01.2019): 1–13. http://dx.doi.org/10.1155/2019/8030374.
Der volle Inhalt der QuelleKano, Takeshi, und Akio Ishiguro. „Decoding Decentralized Control Mechanism Underlying Adaptive and Versatile Locomotion of Snakes“. Integrative and Comparative Biology 60, Nr. 1 (26.03.2020): 232–47. http://dx.doi.org/10.1093/icb/icaa014.
Der volle Inhalt der QuelleChang, Alexander H., und Patricio A. Vela. „Evaluation of Bio-Inspired Scales on Locomotion Performance of Snake-Like Robots“. Robotica 37, Nr. 08 (05.02.2019): 1302–19. http://dx.doi.org/10.1017/s0263574718001522.
Der volle Inhalt der QuelleNansai, Shunsuke, Takumi Yamato, Masami Iwase und Hiroshi Itoh. „Locomotion Control of Snake-Like Robot with Rotational Elastic Actuators Utilizing Observer“. Applied Sciences 9, Nr. 19 (25.09.2019): 4012. http://dx.doi.org/10.3390/app9194012.
Der volle Inhalt der QuelleDear, Tony, Blake Buchanan, Rodrigo Abrajan-Guerrero, Scott David Kelly, Matthew Travers und Howie Choset. „Locomotion of a multi-link non-holonomic snake robot with passive joints“. International Journal of Robotics Research 39, Nr. 5 (27.01.2020): 598–616. http://dx.doi.org/10.1177/0278364919898503.
Der volle Inhalt der QuelleMori, Makoto, und Shigeo Hirose. „Locomotion of 3D Snake-Like Robots – Shifting and Rolling Control of Active Cord Mechanism ACM-R3 –“. Journal of Robotics and Mechatronics 18, Nr. 5 (20.10.2006): 521–28. http://dx.doi.org/10.20965/jrm.2006.p0521.
Der volle Inhalt der QuelleTranseth, Aksel Andreas, Kristin Ytterstad Pettersen und Pål Liljebäck. „A survey on snake robot modeling and locomotion“. Robotica 27, Nr. 7 (03.03.2009): 999–1015. http://dx.doi.org/10.1017/s0263574709005414.
Der volle Inhalt der QuelleChang, Alexander H., und Patricio A. Vela. „Shape-centric modeling for control of traveling wave rectilinear locomotion on snake-like robots“. Robotics and Autonomous Systems 124 (Februar 2020): 103406. http://dx.doi.org/10.1016/j.robot.2019.103406.
Der volle Inhalt der QuelleYanagida, Takeru, Makito Kasahara und Masami Iwase. „Locomotion Control of Snake-like Robot on Geometrically Smooth Surface“. IFAC-PapersOnLine 48, Nr. 11 (2015): 162–67. http://dx.doi.org/10.1016/j.ifacol.2015.09.177.
Der volle Inhalt der QuelleSanfilippo, Filippo, Erlend Helgerud, Per Stadheim und Sondre Aronsen. „Serpens: A Highly Compliant Low-Cost ROS-Based Snake Robot with Series Elastic Actuators, Stereoscopic Vision and a Screw-Less Assembly Mechanism“. Applied Sciences 9, Nr. 3 (24.01.2019): 396. http://dx.doi.org/10.3390/app9030396.
Der volle Inhalt der QuelleDissertationen zum Thema "Locomotion control of snake-like robots"
Kurtulmus, Ergin. „Locomotion And Control Of A Modular Snake Like Robot“. Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612533/index.pdf.
Der volle Inhalt der QuelleKandhari, Akhil. „Control and Analysis of Soft Body Locomotion on a Robotic Platform“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1579793861351961.
Der volle Inhalt der QuelleMotyčková, Paulína. „Simulační modelování a řízení hadům podobných robotů“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-442848.
Der volle Inhalt der QuelleBing, Zhenshan [Verfasser], Alois [Akademischer Betreuer] Knoll, Kai [Gutachter] Huang und Alois [Gutachter] Knoll. „Biological-inspired Hierarchical Control of a Snake-like Robot for Autonomous Locomotion / Zhenshan Bing ; Gutachter: Kai Huang, Alois Knoll ; Betreuer: Alois Knoll“. München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1189316587/34.
Der volle Inhalt der QuelleAtakan, Baris. „3-d Grasping During Serpentine Motion With A Snake-like Robot“. Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606887/index.pdf.
Der volle Inhalt der QuelleRyo, Ariizumi. „Analysis of parametric gaits and control of non-parametric gaits of snake robots“. 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199266.
Der volle Inhalt der QuelleAli, Shaukat. „Newton-Euler approach for bio-robotics locomotion dynamics : from discrete to continuous systems“. Phd thesis, Ecole des Mines de Nantes, 2011. http://tel.archives-ouvertes.fr/tel-00669588.
Der volle Inhalt der QuelleMarvi, Hamidreza. „The role of functional surfaces in the locomotion of snakes“. Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50223.
Der volle Inhalt der QuelleCHUANG, YI-HSUN, und 莊佾勳. „Applying an Artificial Neuromolecula System to Various Locomotion Control of a Snake-like Robot“. Thesis, 2016. http://ndltd.ncl.edu.tw/handle/d9fpuk.
Der volle Inhalt der Quelle國立雲林科技大學
資訊管理系
104
In recent snake-like robot research, it often use the best formula to drive the snake-like robot. But it doesn't let snake-like robot learn how to move by itself. There are a lot of external factors in real life caused it can't guarantee that snake-like robot all the best formula derived from the research which can apply in all circumstances. Therefore this study use Artificial neuromolecular system as learning mechanism.to generate angle values to control the snake robots. And set different goals, learning outcomes at different limit angles as the cornerstone, it can combine a lot of possible combinations when you need, so the snake robot can be capable of flexibility and fitness to reach any goal.
Chen, Bo-Han, und 陳柏翰. „Robust adaptive fuzzy estimator-based tracking control of 5-DOFs human-like biped robot locomotion with internal models in human brain“. Thesis, 2011. http://ndltd.ncl.edu.tw/handle/51890069562168246114.
Der volle Inhalt der Quelle國立清華大學
電機工程學系
99
近幾年來,機器人系統的控制問題已經廣泛的被研究。其中包括了系統動態分析、軌跡追蹤控制、機器人行走軌跡規劃以及如何在環境的影響下讓機器人完成被指派的任務等,都是重要的相關課題。除此之外,從生物的角度來探討控制問題也逐漸受到關注,像是人類如何完成自身動作的觀點在類人型雙足機器人的控制上提供了重要的參考。本篇文章提到了人類的感覺運動控制(Sensorimotor Control)主要由兩個控制力組成,即在順向迴圈(Feedforward Loop)方向的逆向控制力以及在內回授迴圈(Internal Feedback Loop)方向的回授控制力。我們將利用此觀點來建立五自由度類人型雙足機器人的強健追蹤控制。其中在人類大腦中具有適應性動態的逆向模型(Inverse Model)提供逆向控制力以順向的方式來補償受控系統大部分動態。另一方面,描述人類肌肉系統的內回授迴圈具有強健回授控制力以達到強健追蹤控制即使受到外部干擾以及受控系統不確定性的影響。再者,在受控系統狀態不可得知的情形下,在大腦中的順向模型(Forward Model)可透過感知的量測資訊來預測受控系統狀態以達到強健估測考量下的追蹤控制即使受到量測雜訊的影響。此外,本研究提出的控制架構可以轉換成求解含有線性矩陣不等式(Linear Matrix Inequality, LMI)限制條件的特徵值問題(Eigenvalue Problem, EVP),而線性矩陣不等式則可以利用最佳化方法有效的求解。
Bücher zum Thema "Locomotion control of snake-like robots"
Trimmer, Barry. Soft-bodied terrestrial invertebrates and robots. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0041.
Der volle Inhalt der QuelleBuchteile zum Thema "Locomotion control of snake-like robots"
Liljebäck, Pål, Kristin Y. Pettersen, Øyvind Stavdahl und Jan Tommy Gravdahl. „Hybrid Control of Obstacle-Aided Locomotion“. In Snake Robots, 239–63. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-2996-7_12.
Der volle Inhalt der QuelleKano, Takeshi, Ryo Yoshizawa und Akio Ishiguro. „TEGOTAE-Based Control Scheme for Snake-Like Robots That Enables Scaffold-Based Locomotion“. In Biomimetic and Biohybrid Systems, 454–58. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42417-0_46.
Der volle Inhalt der QuelleBehn, Carsten, und Jonas Kräml. „Gait Transitions in Artificial Non-standard Snake-Like Locomotion Systems Using Adaptive Control“. In Dynamical Systems in Applications, 1–12. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96601-4_1.
Der volle Inhalt der QuelleZahadat, Payam, David Johan Christensen, Serajeddin Katebi und Kasper Stoy. „Sensor-Coupled Fractal Gene Regulatory Networks for Locomotion Control of a Modular Snake Robot“. In Springer Tracts in Advanced Robotics, 517–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32723-0_37.
Der volle Inhalt der QuelleVonwirth, Patrick, Atabak Nejadfard und Karsten Berns. „Biologically Inspired Bipedal Locomotion—From Control Concept to Human-Like Biped“. In Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin's Readings”, 3–14. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9267-2_1.
Der volle Inhalt der QuelleKoopaee, Mohammadali Javaheri, Cid Gilani, Callum Scott und XiaoQi Chen. „Bio-Inspired Snake Robots“. In Handbook of Research on Biomimetics and Biomedical Robotics, 246–75. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-2993-4.ch011.
Der volle Inhalt der QuelleNunez, Victor, Nelly Nadjar-Gauthier, Kazuhito Yokoi, Pierre Blazevic und Olivier Stasse. „Inertial Forces Posture Control for Humanoid Robots Locomotion“. In Humanoid Robots, Human-like Machines. I-Tech Education and Publishing, 2007. http://dx.doi.org/10.5772/4802.
Der volle Inhalt der QuelleXiaodong, Wu, und Ma Shugen. „CPG-Based Control of Serpentine Locomotion of a Snake-Like Robot“. In Biologically Inspired Robotics, 13–32. CRC Press, 2017. http://dx.doi.org/10.1201/b11365-2.
Der volle Inhalt der QuelleZimmermann, Klaus, Igor Zeidis, Joachim Steigenberger, Carsten Behn, Valter Boehm, Jana Popp, Emil Kolev und Vera A. „Worm-like Locomotion Systems (WLLS) - Theory, Control and Prototypes“. In Climbing and Walking Robots: towards New Applications. I-Tech Education and Publishing, 2007. http://dx.doi.org/10.5772/5093.
Der volle Inhalt der QuelleKuyucu, Tüze, Ivan Tanev und Katsunori Shimohara. „Efficient Evolution of Modular Robot Control via Genetic Programming“. In Engineering Creative Design in Robotics and Mechatronics, 59–85. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-4225-6.ch005.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Locomotion control of snake-like robots"
„EFFICIENT LOCOMOTION ON NON-WHEELED SNAKE-LIKE ROBOTS“. In 7th International Conference on Informatics in Control, Automation and Robotics. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0002945902460251.
Der volle Inhalt der QuelleQiao, Guifang, Guangming Song, Ying Zhang, Jun Zhang und Yuya Li. „Head stabilization control for snake-like robots during lateral undulating locomotion“. In 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2014. http://dx.doi.org/10.1109/robio.2014.7090362.
Der volle Inhalt der QuelleKano, Takeshi, Takahide Sato, Ryo Kobayashi und Akio Ishiguro. „Decentralized control of multi-articular snake-like robot for efficient locomotion“. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011). IEEE, 2011. http://dx.doi.org/10.1109/iros.2011.6048302.
Der volle Inhalt der QuelleKano, T., T. Sato, R. Kobayashi und A. Ishiguro. „Decentralized control of multi-articular snake-like robot for efficient locomotion“. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011). IEEE, 2011. http://dx.doi.org/10.1109/iros.2011.6094712.
Der volle Inhalt der QuelleKasahara, Fumitoshi, Takeru Yanagida und Masami Iwase. „Locomotion control of snake-like robot considering side-slip“. In 2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). IEEE, 2017. http://dx.doi.org/10.23919/sice.2017.8105710.
Der volle Inhalt der QuelleChang, A. H., M. M. Serrano und P. A. Vela. „Shape-centric modeling of traveling wave rectilinear locomotion for snake-like robots“. In 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016. http://dx.doi.org/10.1109/cdc.2016.7799433.
Der volle Inhalt der QuelleSastra, Jimmy, Willy Giovanni Bernal Heredia, Jonathan Clark und Mark Yim. „A Biologically-Inspired Dynamic Legged Locomotion With a Modular Reconfigurable Robot“. In ASME 2008 Dynamic Systems and Control Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/dscc2008-2402.
Der volle Inhalt der QuelleSato, Takahide, Takeshi Kano, Ryo Kobayashi und Akio Ishiguro. „Snake-like robot driven by decentralized control scheme for scaffold-based locomotion“. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012). IEEE, 2012. http://dx.doi.org/10.1109/iros.2012.6385930.
Der volle Inhalt der QuelleJavaheri Koopaee, Mohammadali, Christopher Pretty, Koen Classens und XiaoQi Chen. „Dynamical Modelling and Control of Snake-Like Motion in Vertical Plane for Locomotion in Unstructured Environments“. In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97227.
Der volle Inhalt der QuelleGuo, Xian, ShuGen Ma, Bin Li und MingHui Wang. „Locomotion control of a snake-like robot based on velocity disturbance“. In 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2014. http://dx.doi.org/10.1109/robio.2014.7090393.
Der volle Inhalt der Quelle