Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Local motion planner“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Local motion planner" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Local motion planner"
Karakaya, Suat, und Hasan Ocak. „A Novel Local Motion Planner: Navibug“. Journal of Intelligent & Robotic Systems 100, Nr. 3-4 (17.08.2020): 987–1003. http://dx.doi.org/10.1007/s10846-020-01239-4.
Der volle Inhalt der QuelleYoshida, Eiichi, Satoshi Murata, Akiya Kamimura, Kohji Tomita, Haruhisa Kurokawa und Shigeru Kokaji. „Motion Generation for a Modular Robot“. Journal of Robotics and Mechatronics 14, Nr. 2 (20.04.2002): 177–85. http://dx.doi.org/10.20965/jrm.2002.p0177.
Der volle Inhalt der QuelleHoshino, Satoshi, und Kenichiro Uchida. „Interactive Motion Planning for Mobile Robot Navigation in Dynamic Environments“. Journal of Advanced Computational Intelligence and Intelligent Informatics 21, Nr. 4 (20.07.2017): 667–74. http://dx.doi.org/10.20965/jaciii.2017.p0667.
Der volle Inhalt der QuelleGarrido, S., L. Moreno, D. Blanco und M. L. Munoz. „Sensor-based global planning for mobile robot navigation“. Robotica 25, Nr. 2 (März 2007): 189–99. http://dx.doi.org/10.1017/s0263574707003384.
Der volle Inhalt der QuelleVass, Gábor, Béla Lantos und Shahram Payandeh. „Object Reconfiguration with Dextrous Robot Agents“. Journal of Advanced Computational Intelligence and Intelligent Informatics 10, Nr. 2 (20.03.2006): 234–40. http://dx.doi.org/10.20965/jaciii.2006.p0234.
Der volle Inhalt der QuelleLin, Chien-Chou, Kun-Cheng Chen und Wei-Ju Chuang. „Motion Planning Using a Memetic Evolution Algorithm for Swarm Robots“. International Journal of Advanced Robotic Systems 9, Nr. 1 (01.01.2012): 19. http://dx.doi.org/10.5772/45669.
Der volle Inhalt der QuelleHong, Sun-Gi, und Ju-Jang Lee. „A local motion planner for car-like robots in a cluttered environment“. Artificial Life and Robotics 1, Nr. 1 (März 1997): 39–42. http://dx.doi.org/10.1007/bf02471111.
Der volle Inhalt der QuelleMcConachie, Dale, Andrew Dobson, Mengyao Ruan und Dmitry Berenson. „Manipulating deformable objects by interleaving prediction, planning, and control“. International Journal of Robotics Research 39, Nr. 8 (19.06.2020): 957–82. http://dx.doi.org/10.1177/0278364920918299.
Der volle Inhalt der QuelleTian, Yuan, und Feng Gao. „Efficient motion generation for a six-legged robot walking on irregular terrain via integrated foothold selection and optimization-based whole-body planning“. Robotica 36, Nr. 3 (06.11.2017): 333–52. http://dx.doi.org/10.1017/s0263574717000418.
Der volle Inhalt der QuelleLooi, Chen Zheng, und Danny Wee Kiat Ng. „A Study on the Effect of Parameters for ROS Motion Planer and Navigation System for Indoor Robot“. International Journal of Electrical and Computer Engineering Research 1, Nr. 1 (15.06.2021): 29–36. http://dx.doi.org/10.53375/ijecer.2021.21.
Der volle Inhalt der QuelleDissertationen zum Thema "Local motion planner"
Mohamed, Zozk. „Analys av metoder för lokal rörelseplanering“. Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-92687.
Der volle Inhalt der QuelleIn recent years, we have been able to automate various processes and tasks with the help of robots that use motion planning. Today, there are very few strategies for local motion planning when compared to global motion planning. The purpose of this project has been to analyze three strategies for local motion planning, these have been Dynamic Window Approach (DWA), Elastic Band (Eband) and Timed Elastic Band (TEB).In the project, strengths, weaknesses, behaviours and opportunities for improvement for each strategy have been studied in more detail by performing various simulated tests. The tests measure time to reach the goal, the number of collisions and the number of succeeding attempts. During the project, a virtual omni-directional robot from ABB was used to perform the tests. The tests were performed in as fair a way as possible, where all strategies got the same number of attempts and had the same information about the robot's limitations.The results show that TEB is the fastest strategy, followed by DWA and last Eband that was the slowest strategy. TEB was also the strategy that performed best in dynamic obstacles, however, it was also the strategy that collided most of the tests, while Eband collided the least.
Rahman, S. M. Rayhan. „Performance of local planners with respect to sampling strategies in sampling-based motion planning“. Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96891.
Der volle Inhalt der QuelleLa planification automatique du mouvement de corps rigides en mouvement 3D par translation et rotation en présence d'obstacles a longtemps été un défi pour la recherche pour les mathématiciens, les concepteurs de l'algorithme et roboticiens. Le champ a fait d'importants progrès avec l'introduction de la méthode de "feuille de route" probabiliste basée sur l'échantillonnage. Mais la planification du mouvement en présence de passages étroits est resté un défi.Cette thése présente un cadre d'expérimentation avec des combinaisons de stratégies d'échantillonnage et les planificateurs locaux, et de comparaison de leurs performances sur des problémes définis par l'utilisateur. Notre programme peut également être exécuté parallèle sur un nombre variable de processeurs. Nous présentons des résultats expérimentaux. En particulier, notre cadre nous a permis de trouver des combinaisons de choix d'une stratégie d'échantillonnage avec choix de planificateur local qui peut résoudre des problèmes difficiles de référence.
Manavi, Kasra Mehron. „Medial Axis Local Planner: Local Planning for Medial Axis Roadmaps“. Thesis, 2012. http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-11191.
Der volle Inhalt der QuelleBuchteile zum Thema "Local motion planner"
Gibson, C. G., W. Hawes und C. A. Hobbs. „Local Pictures for General Two-parameter Planar Motions“. In Advances in Robot Kinematics and Computational Geometry, 49–58. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8348-0_5.
Der volle Inhalt der QuelleRosen, Jay. „A renormalized local time for multiple intersections of planar brownian motion“. In Séminaire de Probabilités XX 1984/85, 515–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0075738.
Der volle Inhalt der QuelleLe Gall, Jean-François. „Exponential moments for the renormalized self-intersection local time of planar brownian motion“. In Lecture Notes in Mathematics, 172–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0073845.
Der volle Inhalt der QuelleZolnikov, Konstantin P., Dmitrij S. Kryzhevich und Aleksandr V. Korchuganov. „Regularities of Structural Rearrangements in Single- and Bicrystals Near the Contact Zone“. In Springer Tracts in Mechanical Engineering, 301–22. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60124-9_14.
Der volle Inhalt der QuelleJiang, Lihua, und Mingcong Deng. „Support Vector Machine Based Mobile Robot Motion Control and Obstacle Avoidance“. In Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance, 223–51. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-2086-5.ch008.
Der volle Inhalt der QuelleMeel, Priyanka, Ritu Tiwari und Anupam Shukla. „Optimization of Focused Wave Front Algorithm in Unknown Dynamic Environment for Multi-Robot Navigation“. In Rapid Automation, 553–81. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8060-7.ch026.
Der volle Inhalt der QuelleMkhytaryan, Olha, und Inna Rodionova. „FORMATION OF READING COMPETENCE OF FUTURE DICTIONARIES IN THE CONTEXT OF TECHNOLOGICAL LEARNING (ON THE EXAMPLE OF ANALYSIS OF POETRY BY M. DRY-KHMARY)“. In Trends of philological education development in the context of European integration. Publishing House “Baltija Publishing”, 2021. http://dx.doi.org/10.30525/978-9934-26-069-8-8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Local motion planner"
Merlet, J.-P. „A local motion planner for closed-loop robots“. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2007. http://dx.doi.org/10.1109/iros.2007.4398984.
Der volle Inhalt der QuelleDenny, Jory, und Nancy M. Amato. „The Toggle Local Planner for sampling-based motion planning“. In 2012 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2012. http://dx.doi.org/10.1109/icra.2012.6225212.
Der volle Inhalt der QuelleByrne, Steven, Wasif Naeem und Stuart Ferguson. „An intelligent configuration-sampling based local motion planner for robotic manipulators“. In 2013 9th Workshop on Robot Motion and Control (RoMoCo). IEEE, 2013. http://dx.doi.org/10.1109/romoco.2013.6614600.
Der volle Inhalt der QuellePiccinelli, Nicola, und Riccardo Muradore. „Hybrid Motion Planner Integrating Global Voronoi Diagrams and Local Velocity Obstacle Method“. In 2018 17th European Control Conference (ECC). IEEE, 2018. http://dx.doi.org/10.23919/ecc.2018.8550127.
Der volle Inhalt der QuelleQureshi, Ahmed Hussain, Saba Mumtaz, Wajeeha Khan, Abdul Ahad Ashfaq Sheikh, Khawaja Fahad Iqbal, Yasar Ayaz und Osman Hasan. „Augmenting RRT∗-planner with local trees for motion planning in complex dynamic environments“. In 2014 19th International Conference on Methods & Models in Automation & Robotics (MMAR). IEEE, 2014. http://dx.doi.org/10.1109/mmar.2014.6957432.
Der volle Inhalt der QuelleVega-Brown, William, und Nicholas Roy. „Admissible Abstractions for Near-optimal Task and Motion Planning“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/674.
Der volle Inhalt der QuelleMahmoodi, Mostafa, Khalil Alipour, Mehdi Tale Masouleh und Hadi Beik Mohammadi. „Real-Time Safe Navigation in Crowded Dynamic Environments Using Generalized Velocity Obstacles“. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-35036.
Der volle Inhalt der QuelleShimizu, Yutaka, Wei Zhan, Liting Sun, Jianyu Chen, Shinpei Kato und Masayoshi Tomizuka. „Motion Planning for Autonomous Driving With Extended Constrained Iterative LQR“. In ASME 2020 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/dscc2020-3138.
Der volle Inhalt der QuelleCaracciolo, R., G. Boschetti, N. De Rossi, G. Rosati und A. Trevisani. „A Master-Slave Robotic System for Haptic Teleoperation“. In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95474.
Der volle Inhalt der QuelleCybulski, B., A. Wegierska und G. Granosik. „Accuracy comparison of navigation local planners on ROS-based mobile robot“. In 2019 12th International Workshop on Robot Motion and Control (RoMoCo). IEEE, 2019. http://dx.doi.org/10.1109/romoco.2019.8787346.
Der volle Inhalt der Quelle