Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Local inhomogeneities“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Local inhomogeneities" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Local inhomogeneities"
Batllo, J., F. Goltsman, D. Kalinin und J. Pous. „Seismic recognition of local inhomogeneities“. Pure and Applied Geophysics PAGEOPH 132, Nr. 4 (Februar 1990): 639–52. http://dx.doi.org/10.1007/bf00876811.
Der volle Inhalt der QuelleMartseniuk, Yurii P., Yevhen V. Siusko und Yurii V. Kovtun. „Using microwave refraction to determine local inhomogeneities of a rotating plasma“. Nukleonika 68, Nr. 1 (01.03.2023): 19–24. http://dx.doi.org/10.2478/nuka-2023-0003.
Der volle Inhalt der QuelleSeppenwoolde, Jan-Henry, Mathilda van Zijtveld und Chris J. G. Bakker. „Spectral characterization of local magnetic field inhomogeneities“. Physics in Medicine and Biology 50, Nr. 2 (07.01.2005): 361–72. http://dx.doi.org/10.1088/0031-9155/50/2/013.
Der volle Inhalt der QuelleTkeshelashvili, Lasha. „Discrete optical soliton scattering by local inhomogeneities“. Photonics and Nanostructures - Fundamentals and Applications 11, Nr. 1 (Februar 2013): 95–101. http://dx.doi.org/10.1016/j.photonics.2012.10.001.
Der volle Inhalt der QuelleDuvall, T. L., und A. G. Kosovichev. „New Developments in Local Area Helioseismology“. Symposium - International Astronomical Union 203 (2001): 159–66. http://dx.doi.org/10.1017/s0074180900218974.
Der volle Inhalt der QuelleKushch, Volodymyr I., Igor Sevostianov und Albert Giraud. „Local fields and effective conductivity tensor of ellipsoidal particle composite with anisotropic constituents“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, Nr. 2207 (November 2017): 20170472. http://dx.doi.org/10.1098/rspa.2017.0472.
Der volle Inhalt der QuelleHolý, Václav, Marcin Kryśko und Michał Leszczyński. „Diffuse X-ray scattering from local chemical inhomogeneities in InGaN layers“. Journal of Applied Crystallography 51, Nr. 4 (12.06.2018): 969–81. http://dx.doi.org/10.1107/s1600576718007173.
Der volle Inhalt der QuelleREYNOLDS, JOSEPH P., GERALD J. IAFRATE und JUN HE. „BLOCH DYNAMICS IN SPATIALLY LOCAL INHOMOGENEOUS ELECTRIC FIELDS“. International Journal of High Speed Electronics and Systems 11, Nr. 02 (Juni 2001): 425–53. http://dx.doi.org/10.1142/s0129156401000903.
Der volle Inhalt der QuelleCabaço, M. I., M. Besnard, T. Tassaing und Y. Danten. „Local density inhomogeneities detected by Raman scattering in supercritical hexafluorobenzene“. Pure and Applied Chemistry 76, Nr. 1 (01.01.2004): 141–46. http://dx.doi.org/10.1351/pac200476010141.
Der volle Inhalt der QuelleRose, M. A., J. Barnett, D. Wendland, F. V. E. Hensling, J. M. Boergers, M. Moors, R. Dittmann, T. Taubner und F. Gunkel. „Local inhomogeneities resolved by scanning probe techniques and their impact on local 2DEG formation in oxide heterostructures“. Nanoscale Advances 3, Nr. 14 (2021): 4145–55. http://dx.doi.org/10.1039/d1na00190f.
Der volle Inhalt der QuelleDissertationen zum Thema "Local inhomogeneities"
Tsoulka, Polyxeni. „Local inhomogeneities in polycrystalline wide band gap Culn1-xGaxSe2 thin-films“. Thesis, Nantes, 2019. http://www.theses.fr/2019NANT4009/document.
Der volle Inhalt der QuelleAmongst the different semiconductor materials used as absorber layers, polycrystalline CuIn1-xGaxSe2 is one of the most promising materials in the thin-film photovoltaic technology. Due to the high efficiency, stability and band gap tunability with x, thin-film solar cells based on CuIn1-xGaxSe2 absorber layer are already industrially implemented. Moreover, in the multi-junction solar cell technology the aim of reaching higher efficiencies while keeping the fabrication costs low, makes the wide band gap indium-free CuGaSe2 absorber layer an interesting candidate as a top cell in a hybrid tandem solar cell based on c-Si bottom cell. However, the actual energy conversion efficiency strongly decreases for x larger than 0.3 and it does not follow the theoretical predictions indicating better performances for x around 0.7. The difficulty to obtain a high device performance for large x has been a worldwide question for several years and many theories have been proposed to explain the limited conversion efficiency. A possible cause of the limited CuIn1-xGaxSe2 performance for large x involves the local inhomogeneities at the inter- or intra-grain regions, since the nature of the accumulated species or compound at the interfaces can be detrimental or beneficial for the solar cell efficiency. In this thesis we investigate two possible phenomena that are likely to occur at the CIGSe interfaces i) a preferential elemental segregation at the grain boundaries and ii) the detrimental copper selenide surface segregation or bulk precipitation. In this work, the elemental segregation is investigated at equilibrium by coupling ab initio calculations and thermodynamic modeling. Our results indicate that substitutional (InGa or GaIn antisite) cannot be expected in the most frequently present interfaces such as the twin grain boundaries. A complementary and simple analysis of the main segregation driving forces was also studied in order to understand the segregation in the more general cases, such as the surface segregation. Our calculations show that In is slightly more favorable to segregate at the surface rather than Ga. The experimental analysis on CuIn1-xGaxSe2 films at intermediate and large x reveals that increasing x the Cu content in the CuIn1-xGaxSe2 film can locally differ, creating detrimental Cu-enriched domains within the bulk of the film. This phenomenon is due to the slow kinetics at large x and the reduced Cu and Ga interdiffusion. In this work, we propose a strategy to avoid these local inhomogeneities by applying a relaxation stage during the CuIn1-xGaxSe2 deposition process. This stage improves the photovoltaic performance, since it leads to a long-range equilibration, grain growth, annihilation of voids and a close to stoichiometry bulk which was expected
Bobenko, N. G., V. E. Egorushkin, N. V. Melnikova und A. N. Ponomarev. „The Electron Density of States in Graphene on a Substrate with a Local Structural Disorder“. Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35212.
Der volle Inhalt der QuelleLiu, Xuerong. „X-ray diffuse scattering studies of the local structural inhomogeneities in high temperature superconductors“. Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3339219.
Der volle Inhalt der QuelleTitle from first page of PDF file (viewed February 6, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 126-131).
Chakraborty, Akash. „Effets des inhomogénéités nanométriques sur les propriétés magnétiques de systèmes magnétiques dilués“. Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00947328.
Der volle Inhalt der QuelleReinhardt, Jörg [Verfasser]. „Inversion for local stress field inhomogeneities / vorgelegt von Jörg Reinhardt“. 2007. http://d-nb.info/984776834/34.
Der volle Inhalt der QuelleKuen-HsienWu und 吳坤憲. „Measurement and Modeling of Local Seebeck Coefficient in Thermoelectric Inhomogeneities“. Thesis, 2010. http://ndltd.ncl.edu.tw/handle/58082402134254649541.
Der volle Inhalt der Quelle國立成功大學
機械工程學系碩博士班
99
A Potential Seebeck Microprobe apparatus is described that a profile of Seebeck coefficients can be detected on a material sample surface for thermopower investigations. Due to its spatially resolved limit on detecting small inhomogeneities of dopants or composition changes, we here propose a constructive combination of ANSYS coupled-field numerical simulation and digital signal processing in order to improve the spatial resolution by deconvolution algorithm. The relevant transfer function, obtained from numerical calculations, was validated and successfully applied to theoretical and experimental data. The improvement in detecting thermoelectric bulk material sample was demonstrated, in which the spatial resolution of Potential Seebeck Microprobe is increased by the inverse of measured Seebeck signal. Also, the systemic preconditions (tip size, signal capture time and scan period), which are the main factors to affect the captured thermovoltages, were discussed in detail. In addition, for detecting thermoelectric film material sample, we found that the heat flow penetrating into substrate causes an additional Seebeck distortion, leading to a low spatial resolution. Therefore, a correct transfer function, according to the characteristic of Potential Seebeck Microprobe as a low-pass filter, is next proposed for the successful spatial resolution improvement. Finally, we provide an efficient route to use model order reduction, which reduces the transient three-dimensional analysis time, for searching the required transfer functions. Thus, we can fast perform significant improvements beyond the current measured resolution of Potential Seebeck Microprobe, which is the unique technique to detect the thermopower of thermoelectric inhomogeneities.
Rakić, Aleksandar [Verfasser]. „On the influence of local inhomogeneities on cosmological observables : from galaxies to the microwave background / Aleksandar Rakić“. 2007. http://d-nb.info/987842021/34.
Der volle Inhalt der QuelleBuchteile zum Thema "Local inhomogeneities"
Bettin, A., und D. Gross. „Crack Propagation in Materials with Local Inhomogeneities under Thermal Load“. In Lecture Notes in Engineering, 85–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-88479-5_9.
Der volle Inhalt der QuelleAlex Polkanov, Yury. „A set of proposals to overcome the crisis in Atmospheric Remote Sensing Technologies“. In Revolutionizing Earth Observation - New Technologies and Insights [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1004255.
Der volle Inhalt der QuellePlerrehumbert, R. T. „The Effect of Local Baroclinic Instability on Zonal Inhomogeneities of Vorticity and Temperature“. In Advances in Geophysics, 165–82. Elsevier, 1986. http://dx.doi.org/10.1016/s0065-2687(08)60038-2.
Der volle Inhalt der QuelleCobbold, Richard S. C. „Ultrasound Imaging Arrays“. In Foundations of Biomedical Ultrasound, 413–91. Oxford University PressNew York, NY, 2006. http://dx.doi.org/10.1093/oso/9780195168310.003.0007.
Der volle Inhalt der QuelleEpstein, Irving R., und John A. Pojman. „Waves and Patterns“. In An Introduction to Nonlinear Chemical Dynamics. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780195096705.003.0011.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Local inhomogeneities"
ROMANO, ANTONIO ENEA. „LOCAL INHOMOGENEITIES AND THE VALUE OF THE COSMOLOGICAL CONSTANT“. In Proceedings of the First LeCosPA Symposium. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814449373_0019.
Der volle Inhalt der QuelleKrause, H., und J. Engemann. „Measurement of local material inhomogeneities in magnetic garnet films“. In International Conference on Magnetics. IEEE, 1990. http://dx.doi.org/10.1109/intmag.1990.734959.
Der volle Inhalt der QuelleYu, Tao. „Response of Love waves to local inhomogeneities: A model study“. In SEG Technical Program Expanded Abstracts 1995. Society of Exploration Geophysicists, 1995. http://dx.doi.org/10.1190/1.1887293.
Der volle Inhalt der QuelleFreyer, Richard, Uwe Hampel, M. Forejtek und Cuong T. Luu. „Detection of local inhomogeneities in scattering media using tomographic reconstruction techniques“. In BiOS Europe '95, herausgegeben von Britton Chance, David T. Delpy und Gerhard J. Mueller. SPIE, 1995. http://dx.doi.org/10.1117/12.228680.
Der volle Inhalt der QuelleKrit, Timofey, Valeriy Andreev und Victor Kostikov. „Nonlinear moduli estimation for rubber-like media with local inhomogeneities elastography“. In ICA 2013 Montreal. ASA, 2013. http://dx.doi.org/10.1121/1.4799568.
Der volle Inhalt der QuelleBekirov, B., I. Ivanchenko, M. Khruslov und N. Popenko. „Numerical modeling the resonance X-band structures with local inhomogeneities inside“. In 2016 IEEE International Conference on Mathematical Methods in Electromagnetic Theory (MMET). IEEE, 2016. http://dx.doi.org/10.1109/mmet.2016.7544049.
Der volle Inhalt der QuelleMalev, Andrei V., und Evgeny A. Viktorov. „Solvable model in multimode dynamics including the case of local inhomogeneities“. In Laser Optics, herausgegeben von Artur A. Mak. SPIE, 1994. http://dx.doi.org/10.1117/12.183164.
Der volle Inhalt der QuelleGoloborodko, Andrey A., Vitalij N. Kurashov, Dmytro V. Podanchuk und Natalia S. Sutyagina. „Shack-Hartmann wavefront sensor for the determination of local inhomogeneities of the surface“. In SPIE Proceedings, herausgegeben von Malgorzata Kujawinska und Oleg V. Angelsky. SPIE, 2008. http://dx.doi.org/10.1117/12.797117.
Der volle Inhalt der QuelleGiusti, Andrea, Luca Magri und Marco Zedda. „Flow Inhomogeneities in a Realistic Aeronautical Gas-Turbine Combustor: Formation, Evolution and Indirect Noise“. In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-76436.
Der volle Inhalt der QuelleBreitenstein, Otwin. „Lock-in Thermography-Based Local Efficiency Analysis of Solar Cells“. In ISTFA 2012. ASM International, 2012. http://dx.doi.org/10.31399/asm.cp.istfa2012p0250.
Der volle Inhalt der Quelle